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Abstract 
 

 

 

Advances in artificial intelligence (AI) could potentially reduce the complexities and costs in 

drug discovery. Using a resource-based view, we conceptualize an AI innovation capability that 

gauges a firm's ability to develop, manage and utilize AI resources for innovation. Using patents 

and job postings to measure AI innovation capability, we find that it can affect a firm’s discovery 

of new drug-target pairs for preclinical studies. The effect is particularly pronounced for 

developing new drugs whose mechanism of impact on a disease is known and for drugs at the 

medium level of chemical novelty. However, AI is less helpful in developing drugs when there is 

no existing therapy. AI is also less helpful for drugs that are either entirely novel or those that are 

incremental “follow-on” drugs. Examining AI skills, a key component of AI innovation 

capability, we find that the main effect of AI innovation capability comes from employees 

possessing the combination of AI skills and domain expertise in drug discovery as opposed to 

employees possessing AI skills only. Having the combination is key because developing and 

improving AI tools is an iterative process requiring synthesizing inputs from both AI and domain 

experts. Taken together, our study sheds light on both the advantages and the limitations of using 

AI in drug discovery and how to effectively manage AI resources for drug development. 

 

Keywords: Artificial intelligence, drug discovery, IT Innovation, biotech & pharmaceutical 

industries, AI capability 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 2 

Introduction 

The drug discovery process is extremely complex (Dougherty and Dunne 2012). It 

requires navigating a combinatorial space of more than 1060 molecules to find a suitable drug 

candidate (Agrawal et al. 2019; Mak and Pichika 2019). This vast search space is simply too 

large for human beings to process effectively using technologies without an artificial intelligence 

(AI) component. As a result, drug candidates discovered using conventional methods are often 

clustered in small areas of the innovation space and many of them provide only slight 

improvements over existing drugs (Trafton 2020). Accordingly, it is hard to find new drugs, 

especially those that differ substantially from existing drugs and that provide big improvements 

(Krieger et al. 2018; Rotman 2019; Scannell et al. 2012). 

This problem also presents opportunities to accelerate compound discovery and the 

overall drug development process if the search through the combinatoric space could be 

expedited. Advances in AI, especially with the recent advances in digitization and machine 

learning, could help address the intractable search problem of discovering new drug candidates 

(Agrawal et al. 2019). Because AI excels in automating predictions and identifying hidden 

patterns in data, it facilitates recombination in innovation (Wu et al. 2020), accelerating the 

discovery of novel chemical compounds under certain conditions. For instance, AI can screen 

compounds 100 times faster than humans can using conventional methods (Smith 2020), and AI 

algorithms can constantly improve their prediction accuracy through feedback data. Using AI to 

aid drug development, medical and machine learning specialists succeeded in finding a novel 

antibiotic, Halicin and other drug candidates, out of more than 100 million molecules, in a 

fraction of the time that traditional methods require (Stokes et al. 2020). Not only can Halicin kill 

many species of antibiotic-resistant bacteria in animal studies, it is also structurally distinct from 

prior antibiotics (Marchant 2020). This discovery is groundbreaking because antibiotic-resistant 
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“superbugs” are a major public health issue that traditional methods have largely failed to 

address. In addition to antibiotics, AI has also accelerated the search for coronavirus vaccines. A 

collaborative effort between AI and medical experts created an AI system that can identify 

optimal mRNA sequences in just 16 minutes (Liang 2020; Zhang et al. 2020). In addition to 

speed, mRNA sequences found through AI have a more robust secondary structure that can 

produce a stable and efficacious mRNA vaccine against COVID-19.1  

As AI technologies are increasingly adopted in drug discovery and anecdotal evidence 

about AI’s effect on drug discovery continues to grow, it is important to examine the effect of AI 

on drug discovery systematically. As with all technologies, AI has both advantages and 

disadvantages when applied to improve busines and innovation processes (Wu et al. 2020). 

Firms lacking an understanding of the benefits and limitations of AI could misallocate valuable 

AI resources to the types of projects where AI provides minimal benefits. Failed outcomes from 

these investments could then create disincentives to invest in AI even in areas where AI can 

clearly offer benefits. This can in turn hurt firms’ long-term competitiveness (Aral and Weill 

2007).  

In this study, we examine what AI can and cannot do for drug innovation, how firms can 

develop and manage AI, and how these AI practices differ from practices using earlier 

generations of information technologies (IT). Drawing from a resource-based and IT capability 

framework, we conceptualize an AI innovation capability (AIIC) – the firm’s ability to develop, 

manage and utilize AI resources for scientific discovery and research and development (R&D). 

We measure AIIC using patents and job postings. They collectively capture three types of AI 

resources that are key for creating AIIC in firms: 1) tangible AI assets such as data and 

 
1 https://syncedreview.com/2020/05/12/new-baidu-algorithms-boost-mrna-vaccine-development-for-sars-cov-2/ 
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infrastructure; 2) AI skills that are critical to create, implement and deploy AI tools for scientific 

discovery; 3) AI-enabled intangibles such as firm practices and knowledge assets that 

complement the use of AI. We then apply the AIIC across a wide range of bio-pharma firms to 

examine its effect on drug innovation. In assessing a firm’s AI skills, a key part of the AIIC, we 

quantify the total AI skills in a firm and also distinguish employees that individually possess a 

combination of AI skills and domain knowledge from those with just AI skills. Possessing this 

combination is key to AI-based innovation because effective use of AI for drug discovery is an 

iterative process that requires a continuous synthesis of knowledge from both AI and medical 

experts. We then estimate how the AIIC can impact the quantity and chemical novelty of drugs 

that are developed under preclinical studies.  

Our findings show that firms with higher AIIC can better support the compound 

discovery for preclinical studies than can other firms. This is consistent with AI’s abilities to 

accelerate search and discovery in a previously computational infeasible space. We also find that 

the effective management of AI for drug development involves not just hiring employees with AI 

skills but hiring those with a combination of AI and medical knowledge. We show that there are 

both advantages and limitations of using AI for developing drugs. As of this writing, the current 

state of AI is not mature enough to produce drugs with a full spectrum of novelty for preclinical 

studies. Instead, our findings suggest that AI works best for drugs aimed at an intermediate level 

of novelty that is neither too novel nor too incremental and for drugs whose mechanism for 

attacking the disease is known.  

Theory and Hypotheses 

Our investigation covers four areas. First, we develop the concept of AIIC from the 

resource-based view of the firm. We then examine AI and compound discovery for preclinical 
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studies. Next, we examine how AI can aid drug discovery by investigating cases when the 

mechanisms of impact for treating the disease are known. Lastly, we probe into the effect of AI 

on the novelty of drugs. 

AI Innovation Capability and the Resource-based View of the Firm 

Firms have developed IT capabilities to gain competitive advantage (Bharadwaj 2000; 

Santhanam and Hartono 2003). Bharadwaj (2000) defines IT capability as “the ability to 

mobilize and deploy IT-based resources in combination or co-present with other resources and 

capabilities.” The combination of several IT-related sources such as IT infrastructure, practices, 

and employee skills helps firms create IT capability (Bharadwaj 2000; Ravichandran et al. 2017; 

Tambe and Hitt 2012). Such combinations are often valuable, rare, difficult to imitate, and non-

substitutable, allowing firms to differentiate themselves, improve R&D productivity, and 

outperform competitors (Bardhan et al. 2013; Joshi et al. 2010; Kleis et al. 2012).  

Drawing from the resource-based and IT capability view, we argue that firms can also 

benefit from creating AIIC. Specifically, we define a firm’s AIIC as the ability to develop, use, 

and manage AI resources in combination or co-present with other resources and capabilities to 

effectively conduct scientific discovery and R&D. Grant (1991) suggests that firms can leverage 

three types of resources to create competitive advantage: tangible resources, personnel-based 

resources, and other intangible resources. We similarly examine AIIC using the three types. 

First, tangible AI resources may include data, infrastructure and algorithms that are customized 

for specific scientific discovery (Varian 2018). They form the foundation upon which firms can 

develop AIIC.  

Second, having AI skills, as embodied in the employees, is critical to create, implement 

and deploy AI tools for scientific discovery (Babina et al. 2020). Creating an AI tool for drug 
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 6 

discovery requires continuous syntheses of inputs from both AI and medical scientists during 

both the development and the operational stages of the tool. Accordingly, AI skills should not be 

constrained by hiring employees with AI expertise only. They also need to have some working 

pharmacology knowledge so they can speak the same language as the medical scientists to 

effectively communicate and work with them. Having a multi-disciplinary perspective helps AI 

and medical scientists to select and solve a problem that AI is suited to address. However, this 

does not necessarily mean that firms should hire employees who are experts in both AI and drug 

discovery, a combination which may be difficult to find. Rather, employees can be expert in one 

domain and possess some working knowledge of the other. For example, an AI expert does not 

need to have an advanced degree in pharmacology or medicine but does need some domain 

knowledge, so she can communicate and collaborate effectively with domain experts in drug 

discovery. Thus, it is critical to distinguish the need for personnel who have a combination of AI 

and domain expertise from those with either only AI skills or only domain expertise. For 

instance, the discovery of Halicin was the result of a successful multi-disciplinary collaboration 

between medical and computer scientists, many of whom have a main expertise in one of the two 

areas (either machine learning or medical sciences) and some working knowledge in the other. 

This collaboration has created a machine learning platform that can broaden the search space for 

biodiversity and led to the discovery of a new type of antibiotics (Stokes et al. 2020). The 

platform is also constantly improving as operational data are fed back to improve algorithmic 

performance, creating a virtuous cycle that can dramatically accelerate the drug innovation 

process. Having domain expertise is key to distinguishing spurious correlations from causations 

in the output of AI, so the right feedback and training data can be selected to train AI algorithms.  
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The combination of AI and domain expertise contrasts to the use of prior generations of 

IT that often centralize IT employees because any expertise they might possess in other areas is 

generally not put to use beyond the tool development stage. Additional domain skills, such as 

understanding business processes, are useful primarily at the design stage of an IT tool but not in 

the operational stage (Hammer 1990). AI, on the other hand, requires a constant and iterative 

approach, which relies heavily on using operational data to improve algorithmic performance, an 

approach that traditional IT implementations do not use. Thus, even after an AI tool is designed 

and deployed, AI and domain experts still need to put their cross-disciplinary skills to use, so that 

they can continuously work together to improve algorithmic performance and to keep up with 

AI’s rapid technical advances. Accordingly, having the combination of AI and domain expertise 

within individual employees is critical to creating AIIC because it is an indicator of how well a 

firm can utilize both AI and domain expertise to innovate. 

Lastly, AI-enabled intangibles, including firm practices and knowledge assets that can 

empower and foster the use of AI, are key drivers for improving firm performance and 

competitiveness (Barney 1991; Teece 1998). Firms that recognize what AI can offer to their 

businesses are more likely to invest in AI technologies, invent new AI methods, and develop 

practices that complement AI. Overall, we expect firms that have acquired tangible and 

intangible AI assets as well as employees with AI skills, especially those with a combination of 

AI and domain knowledge, can have more capabilities to innovate using AI.  

 AI and Drug Discovery 

Developing drugs is perhaps one of the most expensive and riskiest processes in the 

world, costing over $2 billion for a typical drug (DiMasi et al. 2016). About 90% of potential 

drugs fail to attain FDA approval (Smietana et al. 2016). The early stage of developing drugs 
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primarily comprises the discovery and preclinical trials that often involve animal testing where 

drug candidates are proposed to address certain biological targets that cause a disease. Once a 

drug candidate-target pair is found and verified during the preclinical trial phase, the drug enters 

the later clinical trials stage. If the drug succeeds in these trials, the last stage involves the FDA 

deciding whether to grant final approval.  

We focus on AI’s effect on the early stage of drug discovery because the early stage is 

particularly crucial to the entire innovation process in that discovering more drug candidates 

initially will likely lead to more clinical trials and approvals. Furthermore, because an average 

drug can take more than 10 years to develop and because many advances in machine learning are 

too recent, it may be too early to capture AI’s effect on later stages. Thus, we mainly focus on 

the effect of AI on the early stage of drug innovation. But the role of AI in the late-stage 

innovations might one day be examined in a similar way. 

The early-stage drug discovery process has been inherently slow because it involves 

searching for chemical compounds in a large complex space spanning multiple scientific 

disciplines. The breadth of the search area ranges from genetics to protein synthesis, from 

biological and chemical synthetic processes to drug mechanisms (Dougherty and Dunne 2012; 

Vamathevan et al. 2019). The drug discovery process requires an understanding of the human 

biological system consisting of 25,000 genes and millions of proteins, all of which can create 

complex interactions with each other (Pisano 2006). The difficulty in managing this complexity 

is a key reason for the high failure rate in developing drugs (Dougherty and Dunne 2012).  

Using IT to find new chemical compounds and to advance drug discovery started decades 

ago. IT is an underpinning in the fields of cheminformatics and bioinformatics studies. Yet past 

generations of IT have had only limited success in discovering new drugs (Brown 1998; Drews 
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 9 

2000). However, AI, with recent advances in digitization and machine learning, can 

fundamentally accelerate the discovery of new drug candidates for two reasons. First, the 

digitization of scientific knowledge has enlarged the digital search space and AI is especially 

suited for taking advantage of the enlarged data domain to identify new drug candidates (Jayaraj 

and Gittelman 2018). Instead of being hampered by their complexity, more data and more fine-

grained data can improve the accuracy of AI algorithms. Second, human experts using traditional 

methods tend to find drugs within a narrow spectrum of novelty (Trafton 2020). AI, on the other 

hand, can overcome the limitations of human searches to explore a much larger innovation space 

that can greatly facilitate recombination in innovation (Wu et al. 2020). By automatically 

collecting, analyzing, and detecting complex patterns in the existing data, AI algorithms can 

search through the combinatoric space to identify new compounds with desired pharmacological 

effects. Compared to other technologies, AI can do this without having explicit instructions. 

Through many examples of input-output pairs, supervised learning (an area of machine learning) 

can accurately uncover linkages and make better and faster predictions than humans can in many 

areas (He et al. 2015; Hu et al. 2018). This can be particularly helpful in situations where the 

bottleneck of scientific discovery lies in the inability to navigate large complex data to make 

predictions, the type of problem faced in compound discovery (Hughes et al. 2011). By 

providing a ranked list of potentially promising drug candidates for human researchers to 

investigate, AI can accelerate the early stage of drug development.  

Hypothesis 1: AI innovation capability has a positive effect on drug-target identification 

at the early stage of the drug development process. 

An important part of AIIC is the ability of AI and medical scientists to collaborate. Their 

collaboration was key to finding Halicin and other novel chemical compounds for preclinical 
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 10 

studies. A successful collaboration requires that AI scientists have domain knowledge in drug 

discovery and medical scientists to have some AI skills. Medical scientists do not need to be AI 

experts and vice versa. AI scientists with some domain knowledge can effectively work with 

medical scientists in choosing the appropriate training and feedback data for AI to use. Having 

some AI skills can help medical scientists understand the output of AI algorithms, and make the 

appropriate judgements and actions. They are more likely to know when to trust algorithmic 

outputs, detect false positives, and understand how to communicate their concerns to further 

improve AI tools. Ultimately, the success of developing, managing and using AI for scientific 

discovery requires that AI scientists and domain experts collaborate (Hitt et al. 2018); having 

employees who individually possess both AI and domain knowledge could facilitate the 

collaboration.  

Hypothesis 2: Firms with employees who individually possess both AI and domain 

knowledge are more likely to discover drug candidates than firms with employees who possess 

only AI knowledge but lack domain knowledge. 

AI and Discovering Drugs with Known Mechanisms of Impact 

Having a large amount of training data is necessary for machine learning to make useful 

predictions. Diseases with known treatments are more likely to fulfill the data requirement 

because existing treatments and mechanisms are usually documented in the literature. 

Furthermore, when the mechanism of impact or existing treatments are known, experts can more 

easily distinguish likely drug candidates from spurious ones. The disambiguation process is 

especially important because AI is an effective prediction machine for finding correlations, but it 

cannot directly provide causal inference. When the mechanism of impact for treating a disease is 

known, it is easier for scientists to check and verify whether the drug candidates have the desired 
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 11 

mechanisms to attack the disease (“Mechanism matters” 2010), and complement AI by choosing 

the best drug candidates for clinical trials. Although data analytics can automate the 

disambiguation process to some extent if the mechanisms are digitized, the most valuable 

knowledge still lies in forms of human intuition growing out of experiences that are difficult to 

digitize (Wu et al. 2020). It is thus important to have domain experts ensure that the drug 

candidates possess the desired properties. However, when the mechanism of impact is not 

known, human researchers are less able to distinguish true drug candidates from false ones 

without conducting large and expensive clinical trials. Having too many false positives 

recommended by AI could impede scientific progress if these false positives are selected for 

clinical trials. Thus, we expect AI to have a stronger effect for finding drug candidates with 

known mechanisms of impact than for finding drugs whose mechanisms of impact are unknown. 

Hypothesis 3: AI innovation capability helps in discovering drug candidates with known 

mechanisms of impact better than it helps in discovering those whose mechanisms are unknown. 

AI and Drug Novelty 

While AI can accelerate the discovery of drug candidates for preclinical studies, it is 

unclear whether the drug candidates it discovers represent incremental or large improvements 

over existing drugs. Research has shown that discovering drug candidates aimed at novel 

therapies that represent big leaps is much harder than discovering therapies offering incremental 

improvements (“follow-on” drugs) (Rajkumar 2020). However, on average, once they gain FDA 

approval, the return on these novel drugs is substantially higher than that on “follow-on” drugs 

(Krieger et al. 2018). Although it is difficult to assess a drug’s therapeutic impact at the early 

stage, the chemical novelty of a drug is often a proxy, providing an ex-ante measure of drug 

effectiveness (Krieger et al. 2018). 
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As discussed above, AI can help in identifying new molecules with desired 

pharmacological effects when there are abundant data available for AI to search through for 

finding hidden patterns, especially when an existing treatment or drug mechanism is known. For 

example, in 46 days, Insilico Medicine uncovered and experimentally tested six new compounds 

that can inhibit discoidin domain receptor 1 (DDR1), a tyrosine kinase target implicated in 

fibrosis and other diseases, because those well-known DDR1 and common kinase inhibitors are 

already well-documented (Zhavoronkov et al. 2019). Similarly, the discovery of Halicin is 

possible with AI because the mechanisms of how antibiotics work are known. However, novel 

drugs that differ radically from existing treatments have almost no precedents, and machine 

learning is ill-suited to support discovering them (Wu et al. 2020). Inferences based on limited 

data may depend heavily on tacit knowledge that is inherently costly to collect and transfer, and 

therefore can be difficult to digitize for AI consumption (Nonaka and Von Krogh 2009; Von 

Hippel 1994). Developing sufficiently novel drugs also requires deeper understanding of a 

narrow domain with tacit knowledge to which AI can add limited benefit at best. For example, 

the discovery of artemisinin for treating malaria was fundamentally driven by limited data and 

human ingenuity. The only reference to the drug treatment appeared in one sentence in an 

ancient book written in the 3rd century that was not directly related to malaria. Dr. Youyou Tu, 

the inventor of artemisinin, combined her clinical experience with the ancient text to create a 

paradigm shift in antimalarial drug development (Tu 2011). Current AI technology is not capable 

of effectively understanding the meanings in the ancient texts needed to make the necessary link 

to treating the disease (Marcus and Davis 2019). Even if it could, a single data point, such as the 

case in this instance, would hardly be sufficient for machine learning to make useful inferences. 
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Turning to the other end of the innovation spectrum, we expect AI to provide similarly 

limited value in facilitating the development of incremental drugs because many firms already 

have capabilities for discovering such drugs (Krieger et al. 2018) that don’t require advanced 

technology to succeed. Scientists are at least as effective at finding incremental drugs as AI is 

because the search space for incremental drugs is relatively small; it usually entails searching the 

space around existing drug therapies. AI, on the other hand, can provide the most power when 

searching through a large and disconnected space. Furthermore, deploying AI can be expensive 

given the substantial upfront investments and strategic planning required for the necessary digital 

transformation (Bughin et al. 2017; WIPO 2019). There are also recurring costs of employing AI 

specialists to curate data and train AI algorithms. Using AI to discover incremental drugs would 

thus provide marginal benefits at best. Thus, we expect AI is most effective at developing drugs 

that are of intermediate novelty—those that are neither too radically different nor too 

incremental. Intermediate-novelty drug candidates stand to benefit more than their counterparts 

from broad searches and finding patterns in diverse data that AI can support.  

Hypothesis 4: The effect of AI innovation capability on drug development is more positive 

for drugs that have an intermediate degree of novelty than for drugs that have an either lower or 

higher degree of novelty.  

Data and Measurement 

 

First, we discuss how we examine a firm’s drug portfolio. Next, we discuss how we 

measure drug novelty and drug mechanisms. Lastly, we show how we operationalize the firm’s 

AIIC. 

Drug Portfolio 
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We focus on the global biotechnology and pharmaceutical industry, and collect drug 

development data from two leading sources: the Informa Pharmaprojects database and the 

investigational drug database from Clarivate Analytics (Hess and Rothaermel 2011; Kapoor and 

Klueter 2015; Krieger et al. 2018). The drug dataset spans 25 years (1995-2019), has a 

comprehensive coverage of drug candidates, and has information about their detailed 

development stages. We focus primarily on the compound discovery and preclinical research 

stage where drug candidates are proposed to address certain biological targets that cause a 

disease. In addition, our data include the originators and licensees and all other firms involved in 

the development process. We account for the transfer of drug patents and their rights using data 

from the Securities Data Company (SDC) to ensure that drugs in our drug databases are correctly 

matched to the firms responsible for their original development (Eklund 2018). Thus, we can 

observe a firm’s drug portfolio, pipelines and the originators for each drug.  

Existing Mechanisms of Impact 

We create a binary variable measuring whether a mechanism of pharmacological impact for 

treating a disease condition is known. Our drug development database ties drugs to the disease 

conditions they treat over time. For detecting available mechanisms of impact, we label a drug as 

having no known mechanisms when it has “Unidentified pharmacological activity” or “Not 

applicable” indications under drug mechanisms. We also use the free text in the DrugBank 

database that contains comprehensive information about how each drug works (Wishart et al. 

2018; Wishart et al. 2008) to ascertain the drug mechanism.2 

Drug Novelty 

 
2 We can search for keywords “unclear,” or “unknown” to infer whether the drug mechanism is known. For 

example, Modafinil (https://www.drugbank.ca/drugs/DB00745) shows “The exact mechanism of action is unclear, 

although in vitro studies have shown it to inhibit the reuptake of dopamine ...” We can thus infer the drug 

mechanism for Modafinil to be unknown. 
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We focus on small-molecule drugs because they constitute the majority of drugs in development 

(Krieger et al. 2018). In total, we measure the chemical novelty of 13,699 drugs based on their 

known chemical structures.3 Using methods suggested in recent research literature on chemical 

informatics (Backman et al. 2011; Cao et al. 2008), we measure novelty by assessing the 

deviation of the chemical structure of a drug candidate from the structures of all prior drugs. The 

detail of this calculation is shown in Appendix 1. Each drug is assigned a novelty score between 

0 and 1. A higher novelty score indicates a more novel drug.   

Patent Stock 

We use global patents from the worldwide patent statistical database PATSTAT4 that offers 

bibliographical data for over 100 million patents from 90 global patent-issuing authorities. Each 

patent record contains a detailed patent application, citations, a title, an abstract, and legal 

persons (e.g. firms or any organizations) filing the patent application. It identifies whether the 

patent owners are business enterprises, education institutions, governmental agencies or 

individuals (Du Plessis et al. 2009). It also develops a comprehensive approach to standardize the 

original names of patentees (Magerman et al. 2006). We match the names of the firms from our 

drug database to patent assignees in PATSTAT.5 We also adjust the assignee names to represent 

 
3 Our databases provide detailed historical development records of over 60,000 drugs. But the chemical structure 

information for most compounds that never progress beyond the very early discovery stage is not available. The 

same is true for large-molecule drugs (known as biologics). Our empirical analyses mainly focus on the small-

molecule drugs with known chemical structures.  
4 We first harvest the PATSTAT data in the version 2017b to cover patent records till 2017. Since Google launched 

its public datasets of worldwide patents on BigQuery in 2017 (https://cloud.google.com/blog/products/gcp/google-

patents-public-datasets-connecting-public-paid-and-private-patent-data), we further augment our data to cover the 

time period from 2017 to 2019 by retrieving records of global patents through Google Patents Public Datasets. 

Similar approaches are employed to match them to other datasets used in our analysis.  
5 We primarily use the PATSTAT standardized name (PSN_NAME) in the company sector (PSN_SECTOR is 

referred to as COMPANY) to determine the assignees of patents for the firms in our sample for this matching 

process. We also test our matching by using other harmonized names available, such as DOCDB standardized name, 

and the OECD HAN name as recorded in PATSTAT. As the accurate sector assignment is provided for the 

PATSTAT standardized name (PSN_SECTOR for PSN_NAME), we choose to use PSN_NAME for our matching 

procedure.  
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the original company that filed the patent after accounting for their merger and acquisition 

(M&A) history using Thomson Reuters SDC and the Zephyr databases from Bureau Van Dijk. 

Based on these matched firms, we then retrieve their patent application documents from 

PATSTAT and extract filing years, titles, abstracts, and citations for these patents. Following the 

convention in the R&D literature (Griliches et al. 1986; Hall et al. 2001), we use the patent filing 

year (as opposed to the publication year) because it more closely approximates the date when the 

firm produced and used the innovation. Thus, we can measure a firm’s general investment in 

patent inventions using the accumulated stock of patent applications by the firm with an annual 

depreciation rate of 15% (Hall 1990; Hall et al. 2005).6  

AIIC 

Based on the resource-based and IT capability view, we operationalize AIIC by using texts in 

patents and job postings to capture a wide range of AI-related concepts, definitions, applications 

and fundamentals. Patents are primarily used to capture tangible and intangible assets; job 

postings are primarily used to capture employee resources. Thus, the use of patents and job 

postings can collectively capture tangible, intangible and employee resources, all three types of 

resources related to AIIC. We also distinguish machine learning from other types of AI 

investments (Cockburn et al. 2018; WIPO 2019). Below we explain how we find AI-related 

patents and skills. 

 AI-related Patents 

We use patents to capture the ability of a firm to either innovate AI technology itself 

directly or use AI to innovate generally (Webb 2019). In the pharmaceutical and biotechnology 

 
6 We apply a standard perpetual inventory equation with declining balance depreciation to measure patent stock 

(Hall 1990):  𝑃𝑡 = (1 − 𝛿)𝑃𝑡−1 + 𝑅𝑡, where 𝑃𝑡 is the end-of-period patent stock and 𝑅𝑡  is the contemporaneous 

patent inventions during the year 𝑡. We use the conventional 15% per year for the depreciation rate 𝛿.  
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industry, patents have been ubiquitously used to gauge the ability of a firm to innovate. A single 

patent in the drug space can exert unique influence not only on a product, but also on the 

technology used for drug discovery itself (Markman et al. 2004). New drugs are typically 

patented (Abrams and Sampat 2017; Hemphill and Sampat 2011), because patents are the most 

effective way to prevent imitations and substitutions (Cohen et al. 2000; Levin et al. 1987). 

Patents can discourage reverse engineering which is much easier than discovering a new drug, 

thereby preventing theft of intellectual properties (Gilchrist 2016). Accordingly, patents can 

serve as a key indicator of pharmaceutical innovation. 

Patents can thus represent both the tangible and intangible resources, the first and the 

third characteristics respectively for creating AIIC. Patents are tangible innovation outcomes 

because they are highly portable and transferable (Markman et al. 2004). Patents can also 

approximate for intangibles and knowledge assets that are critical for future innovation and 

productivity (Tambe et al. 2019) because they are the culmination of complementary processes, 

skills, and firm practices. Firms with more AI-related intangible assets are more innovative and 

more productive than their counterparts (Brynjolfsson et al. 2018). 

To find patents related to AI, we use both AI patent classes and the free text in each 

patent. AI patent classes can directly measure whether a patent contributes to the core AI 

technologies. The United States Patent and Trademark Office (USPTO) designated a specific 

patent class for AI technologies: Class 706 for “Data Processing – Artificial Intelligence.” This 

class has a large set of subclasses including “neural networks” and “machine learning.” To find 

patents that employ AI to solve problems in other domains without directly contributing to the 

core advances in AI technology itself, we look for AI-related words from a glossary of validated 

words and phrases in patent titles and abstracts. This glossary includes words related to the three 
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interrelated technological subfields within AI: robotics, symbolic systems, and learning 

(Cockburn et al. 2018). We also follow a widely accepted computing classification system from 

the Association of Computing Machinery Computing Classification System that accounts for the 

dynamic change of AI technologies (WIPO 2019). Because this method has been used for over 

50 years to organize the classification of concepts and trends of technologies, it can significantly 

mitigate the subjective classification of AI.7 Furthermore, we also include phrases related to a 

variety of AI technologies from outside vendors because off-the-shelf AI technologies (e.g., 

PyTorch and TensorFlow) can also be used for scientific discoveries (Raymond et al. 2019). 

Lastly, we test several variants of these keywords in our dictionary; they do not qualitatively 

change the classification. A list of AI-related keywords used to identify AI-related patents is in 

Appendix 2.  

In total, we find 7,433 AI-related patents developed by the biotechnology and 

pharmaceutical firms from our dataset spanning 1995 to 2019. Similar to the way we measure 

general patent stock, we track the development of AI over time and use the accumulated AI-

related patent stock with an annual depreciation rate of 15% (Hall 1990; Hall et al. 2005). While 

our analysis primarily focuses on the years from 2010 to 2019, patents from prior years are used 

to construct a patent stock for each firm. The stock-based measure also aligns with the spirit of 

the standard innovation production function that models new knowledge as a function of existing 

knowledge stock combined with resources devoted to produce the new knowledge (Jones 2005; 

Romer 1990).  

 
7 There are three major hierarchies to develop AI-related phrases for classification: (i) the “AI” hierarchy, comprised 

of AI functional applications such as natural language processing, computer vision, knowledge representation and 

reasoning, simulation of human cognitive tasks, and AI techniques used to realize those functions; (ii) a “machine 

learning” hierarchy that unveils numerous learning-based AI techniques; and (iii) a “life and medical sciences” 

hierarchy under the “applied computing” category that covers activities pertinent to intelligent computing for 

producing medicines. 
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We plot the growth in AI-related patents in Figure 1 and distinguish the three types of AI 

technologies: expert systems, machine learning, and other AI applications. Overall, we see a 

tremendous growth in patents related to AI, with the biggest growth in machine learning. 

AI-related Job postings 

In addition to the tangible and intangible resources represented by patents, we also collect 

job postings that can be used to create constructs related to personnel skills, the second type of 

the resources in creating AIIC. Job postings related to AI can be used to gauge the latent demand 

for AI skills in firms (Alekseeva et al. 2019), which is critical to using AI tools to innovate. AI 

skills can also capture intangible human capital that the firms need to foster innovation in the 

long run, as well as approximate for innovation outputs that are not patentable. As such, AI skills 

can also measure certain tangible and intangible assets that are not captured in patents. Together, 

AI-related patents and skills are thus complementary representations of a firm’s overall AIIC.  

We measure the total AI skills in firms from job postings, similar to Babina et al. (2020).8 

Our job posting data come from a leading analytics company collecting job posts from over 

40,000 online job boards and company websites from 2010 to 2019. We examine both the skill 

requirements and job titles listed in each of the postings. To measure AI skills in job postings, we 

search for a similar set of AI-related words that are used in classifying AI-related patents. These 

job postings have a time stamp and the name of the hiring firms, allowing us to create a metric 

about AI skills for each firm in each year. We also use the job title classification from O*NET to 

identify AI-related positions, similar to how IT and analytics labor are distinguished from other 

employees in earlier work (Tambe and Hitt 2012; Wu et al. 2019). If any of the skills listed under 

the job title is related to AI, we treat the posting with that job title as requiring AI skills. We 

 
8 Babina et al. (2020) also document consistent patterns across various measures of AI using job postings. 
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aggregate these individual-level skills for each firm-year observation, assuming that firm- and 

occupation-specific factors with respect to the likelihood of posting a job are uncorrelated.9 AI 

skills at a firm are thus estimated by the number of AI-related job postings. We then measure 

AIIC in a firm using the standardized sum of the standardized values of the variables about AI-

related patents (AI patents) and skills (AI skills) as shown in equation 1. The standardization 

procedure (norm) first subtracts the mean from the variable and then divides the resulting 

difference by the standard deviation. 

AIIC = norm(norm(AI patents) + norm(AI skills))  (1) 

We also separately measure the number of job postings that require both AI skills and 

domain knowledge in medicine because each job posting has detailed skill descriptions for the 

job. In particular, the job postings indicate specific skillsets related to domain expertise for drug 

innovation, so we also search for a set of domain knowledge-related words such as 

pharmaceutical industry knowledge, drug development, molecular biology, medical and clinical 

research for further classification. Thus, we can segregate AI skills into (1) those requiring a 

hybrid of AI skills and domain knowledge, and (2) those requiring only AI skills without domain 

knowledge. We estimate their effects on drug innovation separately.  

IT Innovation Capability 

Similar to how we measure AIIC, we use IT patents, and job postings that require IT skills to 

measure IT innovation capability (ITIC), which is the innovation capability that firms develop 

from their information technology investments. IT patents are identified using Category 2 in 

patent classification that includes computer hardware and software, communications, computer 

 
9 To the extent such matchings vary systematically across firms, the problem can be alleviated by firm-fixed effects. 
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peripherals, and information storage (Hall et al. 2001).10 We identify IT skills using the skill 

requirements in the job postings as well as the job titles. For example, IT skills listed in a job 

posting can include software development as well as hardware support. IT-related job titles can 

include software engineer or systems analyst. If the job posting also contains keywords such as 

computer, website, software, and telecommunication, we identify it as requiring IT skills. Similar 

to our construction of AI skills, we aggregate the talents with IT skills in each firm. The ITIC of 

each firm can thus be calculated as the standardized sum of the standardized values of patents 

and skills measures related to IT. 

Control Variables 

We primarily rely on Crunchbase, PitchBook and Bureau van Dijk Orbis databases to 

incorporate firm characteristics into our empirical models. These three databases provide rich 

information about both public and private firms in the biotechnology and pharmaceutical 

industry. Because entrepreneurial exits have been shown to affect organizational innovation 

outcomes (Bernstein 2015), we control for a firm’s financial ownership status over years (a 

dummy variable indicating whether it is publicly held). We also control for firm age, number of 

employees, and R&D spending. The founding year of each firm is collected and verified using 

BioCentury, Moody’s, Renaissance Capital and Thomson Financial Securities. Workforce 

headcount and R&D expenses come from Compustat Global, BioCentury, and Bureau van Dijk 

Orbis.  

 
10 We also use multiple alternative methods from Forman et al. (2016), such as incorporating electronics-related 

patents about electrical and semiconductor devices identified from Category 4 in Hall et al. (2001) and searching IT-

related phrases on the titles and abstracts of patents. These approaches yield directionally consistent results in our 

estimation on the effect of IT innovation capability. 
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Table 1 shows the summary statistics and the correlations of all the variables for those 

firms with AIIC. We observe that a firm’s AI-related patents and skills, the two data sources that 

we use to measure AIIC, are not highly correlated with each other. 

Empirical Strategy and Identification 

The data used for our primary analysis cover the years between 2010 and 2019, which 

capture the period of rapid advances in AI technologies (Fleming 2018). In total, we have 2,043 

global bio-pharma firms, of which 644 firms have AIIC. We primarily focus on the 644 firms in 

our analysis; results using the full sample are shown in Appendix 3.  

We use firm-level analyses to examine AI’s effect on the quantity of drug candidates 

discovered for preclinical studies using equation 2. Due to the risky nature of drug discovery, the 

number of drug candidates is highly skewed, with many firms having no drug candidates at a 

particular stage in a typical year. This number is further skewed if we only use drugs with 

sufficient chemical novelty. Thus, we take the logarithm of one plus the raw number of drug 

candidates in our main analysis. We also include firm-fixed effects 𝛾𝑖  to control for any 

unobserved time-invariant differences in firm characteristics, and year-fixed effects 𝑦𝑡 to account 

for temporal shocks. We control for a firm’s financial ownership structure to account for 

different innovation priorities between public and private firms. We also control for firm size 

(total employees), firm age, patent stock, and R&D expenditure. Our main coefficient of interest, 

β1, captures the marginal effect of the AIIC on drugs developed at the preclinical trials stage. We 

explore AI’s effect on drug novelty measured by the number of drugs in three categories on the 

spectrum of chemical novelty that correspond to incremental, intermediate and highly novel 

drugs, and estimate equation 2 for each novelty range. 

ln(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑟𝑢𝑔𝑠)𝑖𝑡 = β0 + β1 𝐴𝐼𝐼𝐶𝑖𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝑦𝑡 + 𝛾𝑖 +  𝜖𝑖𝑡 .  (2) 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 23 

We use instrumental variables to address a potential upward bias of AI if high performing 

firms with slack resources choose to invest in AI. The instrumental variables are derived from a 

yearly patent-citation network for each firm in our sample that has AIIC. In the network, each 

node is a firm, and each link is the aggregate patent citations. For example, if patents in firm A 

cited patents from firm B 5 times in the current year, a directed link between A and B would 

have a weight of 5. In this example, the relationship is not reciprocal: B’s patents don’t cite A’s 

patents. Thus, B is A’s neighbor because A has drawn knowledge from B, but A is not B’s 

neighbor since B did not cite A, and thus there is no observed information flow from A to B. We 

use the total number of neighboring firms with AIIC to instrument for a focal firm’s AIIC. We 

also use two variations of these instrumental variables: (1) the average number of AI patents in 

the neighboring firms; (2) the average ratio of a firm’s AI patents to total patents for these 

neighbors. Similar to the network-based approaches to construct instrumental variables in Wu et 

al. (2017), we focus on knowledge flows across firms that serve as a proxy for the cost of 

accessing AI-related knowledge and reflect the ease of accessing external AIIC from neighboring 

firms (see Figure 2 for one example). We exclude direct competitors, defined as network 

neighbors that are in the same industry as the focal firm. Thus, the network neighbors used to 

create the instruments are firms not in the bio-pharma sectors. The citation neighbors also vary 

substantially in their industries and geographical locations and are thus less likely to be affected 

by common industry or region-specific shocks and competitive pressure. The associated F-

statistic in the first stage is 15.4, passing the threshold for the weak instrument test. 

Findings and Discussion 

AI and Drug Discovery 
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We first explore the relationship between a firm’s AIIC and the number of new drug 

candidates a firm discovered for preclinical studies in a year (Table 2). After applying firm and 

year fixed effects and controlling for a firm’s cumulated patent stock, financial ownership status, 

age, total number of employees and R&D expenses, we find that AIIC is positively associated 

with the number of new drugs developed at the preclinical trial stage (Column 1). This effect is 

separate from IT’s effect (Column 2). Specifically, a one-standard-deviation increase in a firm’s 

AIIC is associated with a 3% increase in new drug candidates. Given that it is extremely difficult 

to identify suitable chemical compounds with pharmacological effects for the preclinical trial 

stage, a 3% increase can be substantial, especially if it leads to a major discovery such as Halicin. 

We also find more than 40% of the effect of AI comes from machine learning (Column 3), 

suggesting that the key advance in AI facilitating drug development comes from the ability to 

navigate a large search space as enabled by machine learning. The 2SLS estimations on AI’s 

effect show consistent results (Table 5). All estimations are conducted with standard errors 

clustered at the firm level. Overall, they support Hypothesis 1. 

We also estimate the effect of AI patents and AI skills separately (Table 3).11 Because the 

patent data are also available prior to 2010, we compare AI patents’ effect before and after 2010. 

We find that, likely because of advances, recent AI technologies exhibit a greater effect on drug 

discovery than AI did in earlier years (Column 1 and Column 2).  

We also categorize the overall employees with AI skills into (1) those possessing both AI 

skills and domain knowledge in drug development, and (2) those possessing AI skills only. We 

find that the effect of AI skills comes primarily from those with a combination of AI skills and 

domain knowledge (Column 5). The effect from employees with only AI skills is small and only 

 
11 Job positions take time to fill, so we use lagged 1-year and 2-year of AI skills, and the results are similar. 
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statistically significantly at the p<0.1 level. This suggests that acquiring AI skills alone is not 

sufficient; having employees who can straddle between AI and pharmacology is key to 

facilitating the drug development process. These results support Hypothesis 2.  

AI, Mechanisms of Impact, and Drug Discovery 

If the mechanism of impact for existing drug treatments is known, AI should be more 

effective at developing new drugs to treat similar conditions. In our firm-fixed effects analysis, 

we find that AIIC is positively associated with the number of drug candidates at the preclinical 

trials stage when the mechanisms of impact are known (Column 2 in Table 4), and the size of the 

effect is also greater than that for drugs whose mechanisms are unknown (Column 3 in Table 4). 

The 2SLS estimations show similar results (Columns 2 and 3 in Table 5), suggesting that AI is 

more capable of exploiting existing drug treatments to find new drug candidates that treat a 

similar condition than it is in finding treatments where no prior therapeutic drugs have identified 

mechanisms of impact. These findings support Hypothesis 3. 

AI and Drug Novelty 

We also examine how a firm’s AIIC can affect the discovery of chemically novel drugs. 

Table 4 shows that the effect of AIIC is small and statistically insignificant for both incremental 

drugs (chemical novelty between 0 and 0.3) and drugs at the more novel end of the spectrum 

(chemical novelty between 0.7 and 1). However, within the middle range of chemical novelty, 

from 0.3 to 0.7, the estimate of the effect of AIIC is positive and much greater than the estimates 

for very incremental and highly novel drugs (Columns 1-3, the differences are significant at 

p<0.01). On average a one-standard-deviation increase in a firm’s AIIC is associated with a 2.8% 

increase in the number of drugs in this intermediate novelty range. The 2SLS estimations yield 

directionally similar results (Columns 4-6 in Table 5). These results suggest that a firm’s AIIC 
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can help primarily in discovering medium-novel drugs rather than in discovering either 

completely novel ones or incremental derivatives of prior drugs. Separately estimating AI patents 

and AI skills yields similar results (Appendix 5). Overall, these results support Hypothesis 4.  

We also find that relative to the AIIC, a firm’s ITIC has no significant effect on the 

process of drug discovery for preclinical studies (Table 2).12 While IT is still important to 

support drug discovery, they do not provide a competitive edge in drug development, possibly 

because most firms have already invested in IT, and earlier best IT practices may have already 

diffused throughout the industry. Our results show that AIIC is primarily responsible for 

improving the early stage of drug innovation process before clinical trials occur. Results using 

the full sample of firms are also consistent (Appendix 3). Although there are many firms with no 

AIIC in the full sample, we continue to find that AI can affect the early stage of the drug 

innovation process. The effect is particularly salient for those drug candidates when the 

mechanisms of impact are known and for those drugs at the intermediate level of novelty. In the 

full sample analysis, we also address selection biases of firms choosing to invest more in AI, 

using the Propensity Score Matching and Coarsened Exact Matching (Blackwell et al. 2009; Ho 

et al. 2007; Rosenbaum and Rubin 1983). These results are consistent with our main results. We 

also used different functional forms such as Poisson regressions (Appendix 4). They yield 

directionally similar results.  

Viewing these results together could also help address certain selection biases caused by 

the fact that innovative firms are also more likely to invest in AI. It is difficult to envision a 

scenario where a firm chooses to use AI only to find drugs of intermediate novelty and only 

 
12 Removing AI from general IT investment can cause downward bias of the IT estimates. Our alternative robustness 

tests use AIIC as an instrument for ITIC to isolate the part of IT that is associated with AI. We find a positive effect 

from the AI component of IT, but no effect from the remaining parts of IT. 
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when prior therapies already exist. Presumably innovative firms are likely to try and develop 

drugs across all degrees of novelty. The more plausible explanation is that AI can be particularly 

helpful in this scenario precisely because the innovation capabilities it can provide in aiding drug 

discovery are best suited to making discoveries within this set of conditions.  

Limitations and Future Research 

To the best of our knowledge, our study is the first to systematically measure AIIC and 

examine its effect on compound discovery in drug development. However, there are a few 

limitations that future research should address. First, we primarily examine the effect of AIIC on 

compound discovery for preclinical trials, the early stage in the drug innovation process. Future 

research should examine its effect on later stages, especially the clinical trial phases. The use of 

AI in these later stages may differ from that in the early stage as problems faced in clinical trials 

tend to differ from those in compound discovery. Currently, it may not be feasible to detect the 

effect of AI’s applications in the early stage on a drug’s final approval from the FDA; machine 

learning is just beginning to have an effect on compound discovery and it could take more than a 

decade for a drug to get through clinical trials. However, the same method used in this study to 

examine AIIC’s impact on the early stage can be used to study the later stages as well. Also, in 

our study, we primarily focus on small-molecule drugs whose chemical structures are readily 

available; it would be important to extend the study to include large-molecule drugs which have 

become increasingly important (Krieger et al. 2018).  

Second, it is important to improve the measurement of the actual use of AI. A task-level 

analysis is key to getting at how AI use affects the management of specific business processes. 

Large-scale firm-level studies may not be well-suited to capture the specific uses of AI on a 

particular task which could differ across firms or between divisions within firms (Burton-Jones 
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and Straub Jr 2006). A task-based examination coupled with measuring specific uses of AI can 

help advance the understanding of how different complementary practices are needed to leverage 

AI for specific tasks.   

Third, we note that the job posting data are not the same as the employment data (Tambe 

and Hitt 2012) and our study suffers from the limitation that the data do not fully represent the 

human capital in a firm. Posted job openings may not be filled, and therefore may not be 

representative of the actual human capital in a firm. While we can make assumptions about the 

fill rate from job postings to approximate the actual human capital at a firm, detailed 

employment data are preferred because they provide a direct measurement of human capital. 

However, it is encouraging that a recent study by Babina et al. (2020) finds that AI skills 

measured using job postings are highly correlated with those using resume data that have 

detailed employment history, suggesting that job posting data are a suitable tool to approximate 

AI skills in firms. However, better measurements of AI skills and management practices are 

needed to advance our understanding of how to effectively manage AI. 

Lastly, our paper focuses on the effect of AIIC on drug innovation. Our findings may 

extend beyond drug discovery to have broader effects on general scientific discovery and R&D 

outcomes. Future work should consider the broader implications of AIIC on all innovations. 

Implications and Concluding Remarks 

 In this study, we use a resource-based view of firms to develop a bio-pharma firm’s AIIC 

and examine its effect on the early stage of drug development. Our study makes two important 

contributions. First, we provide a theoretical extension on IT capabilities to understand what 

capabilities AI can provide for innovation. To the best of our knowledge, our study is the first to 

systematically examine the link between AIIC and drug development. We show both the 
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advantages and disadvantages of AIIC in compound discovery for developing new drugs. 

Specifically, we find that AIIC can help develop new drugs at the intermediate level of novelty 

and new drugs whose mechanism of impact for treating a condition is known.  

Second, we create a multi-dimensional yardstick for measuring AIIC. While IT capability 

can be operationalized in many distinct ways depending on the context (Chan and Levallet 

2013), we are the first to use patents and job postings on a large scale to create a metric that can 

gauge a firm’s ability to innovate by developing, using and managing AI resources. We also 

count the number of employees that individually possess AI skills and domain knowledge in 

drug development as an important component of AIIC. This multi-dimensional measure contrasts 

with efforts in a burgeoning area of research on AI productivity that primarily tabulates either 

number of employees or dollar investments to measure AI investment or use (Brynjolfsson et al. 

2018; Dixon et al. 2021).  

Our findings suggest several important managerial implications. First, it is crucial for 

firms to recognize the nature of the collaboration between AI and medical experts as ongoing 

rather than one-off. Having individuals with multi-disciplinary knowledge is key to facilitating 

the ongoing collaboration required for AI-assisted drug innovation. Developing and using new 

AI tools for drug discovery is an iterative process that requires inputs from both AI and medical 

experts. Although the IT alignment literature also shows that the effective use of IT requires the 

combination of IT- and business-related knowledge (Bassellier and Benbasat 2004; Kearns and 

Sabherwal 2006), it is limited to the upfront development of the tool (Hammer 1990). By 

contrast, the effective use of AI requires that the collaboration of AI and domain experts 

continues beyond the tool development stage because wringing the best performance out of AI 

algorithms requires continuously training with new operational data. Thus, the management of 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 30 

AIIC requires individuals with a combination of AI and domain expertise who can persistently 

develop and use AI tools operationally. This does not necessarily mean that firms should hire 

employees who are experts both in AI technologies and in drug discovery. Instead, it requires 

hiring employees who have at least the working knowledge of both.  

A second managerial implication is that AI resources should be managed and used in 

areas where tasks are heavily dependent on automatic data processing and reasoning, and involve 

the navigation of a large search space. However, special attention should be paid to separating 

spurious correlations from causation; experience, intuition, and human expertise are all necessary 

for the effective use of AI, and they complement AI investments to facilitate innovation. 

Third, while AI can expand and navigate the search space for innovation, it is not 

applicable to creating innovation across the entire spectrum of novelty. AI is effective for 

discovering new drug candidates with known mechanisms of impact because it is easier to 

distinguish between spurious correlations and causations in drug candidates. Similarly, we find 

that AI provides the biggest benefit for discovering drug candidates that possess intermediate 

novelty because AI is best at navigating a large search space to combine existing technologies in 

a new way; as such these innovations tend to be of intermediate novelty. In keeping with this 

point, AI is of limited use in developing either very novel or very incremental drug candidates,  

possibly because the problems AI has at the extremes of the novelty spectrum are different both 

from the moderate level of novelty and from each other. At the novel end, AI has a capability 

problem: it is incapable of discovering truly new treatments for which little or no data are 

available to detect patterns. By contrast, the problem at the incremental end is less due to 

capability but to price: it is not worth the effort and cost of deploying AI to find drugs that 

constitute marginal improvements over existing drugs when scientists are already proficient at 
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identifying incremental drugs. As AI tools become cheaper to adopt and use, it may become cost 

effective to use AI for finding incremental drugs in the future. For certain treatments that may 

require drugs that represent a radical break from the past, the current state of AI is ill-suited for 

their discovery. Thus, firms should avoid indiscriminately applying AI to accelerate drug 

discovery without regard to the degree of novelty of the drug they seek.  

This study shows the nuances of managing and applying AI for discovery of new drugs 

for further development. Contrary to popular believes that firms can invest in AI skills simply by 

hiring AI engineers, we show at least in terms of drug discovery, employees who can straddle 

between AI and pharmacology are required. Similarly, AI cannot create a competitive advantage 

in all arenas. Rather, AI can be very useful for discovering drugs whose mechanisms of impact 

are known. AI is also useful for discovering intermediately novel drugs; AI does not provide 

sufficient capabilities and is too expensive to discover incremental drugs, and AI is of virtually 

no use for radically novel drugs. Taken together, these findings represent an argument for the 

thoughtful development, management and application of AI.  

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 32 

 
Figure 1. Rising trend of AI adoption as measured by AI-related patents in bio-pharma firms. Keywords related to 

machine learning include neural network, and support vector machine; keywords related to expert system include 

rule-based inference, and symbolic reasoning.  
 

 

 
 

Figure 2. An illustration of our citation-network based instruments. Each node represents a firm in the network, and 

each edge represents an interfirm citation flow. A directed edge exists between firm A and firm B if firm A cites a 

patent from firm B.  
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Table 1. Summary Statistics and Correlation Table 

                

Variables Mean Std 

dev. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

                

1. ln(Number of Drugs) 0.065 0.30 1.00             

2. ln(Number of Drugs,  

with Known Mechanisms) 

0.062 0.29 0.88 1.00            

3. ln(Number of Drugs, 

without Known Mechanisms) 

0.0066 0.071 0.19 -0.27 1.00           

4. ln(Number of Drugs, 

Novelty: [0-0.3]) 

0.020 0.14 0.35 0.35 0.00 1.00          

5. ln(Number of Drugs, 

Novelty: [0.3-0.7]) 

0.050 0.27 0.60 0.49 0.18 -0.41 1.00         

6. ln(Number of Drugs, 

Novelty: [0.7-1]) 

0.0041 0.057 0.08 0.03 0.14 -0.13 -0.10 1.00        

7. ln(AI Stock) 0.78 0.96 0.51 0.46 0.12 0.06 0.45 0.10 1.00       

8. ln(AI Skills) 0.35 1.23 0.50 0.45 0.12 -0.02 0.48 0.02 0.44 1.00      

9. ln(Patent Stock) 3.60 2.15 0.44 0.42 0.04 -0.02 0.44 0.04 0.61 0.47 1.00     

10. Public Status 0.29 0.45 0.19 0.12 0.14 -0.09 0.26 0.06 0.27 0.21 0.35 1.00    

11. ln(Firm Age) 3.12 0.82 0.37 0.33 0.06 -0.04 0.38 0.01 0.42 0.33 0.34 0.19 1.00   

12. ln(Number of Employees) 6.80 2.94 0.34 0.27 0.11 0.00 0.33 0.04 0.47 0.35 0.35 0.10 0.32 1.00  

13. ln(R&D) 21.46 2.70 0.16 0.16 -0.01 -0.08 0.15 0.11 0.25 0.13 0.16 -0.11 0.15 0.32 1.00 

                

Note:  

(1). The summary statistics are reported based on the sample of firms with AIIC (the number of observations is 

4,122).  

(2). We add one to actual values of the variables to avoid the possibilities of taking a natural logarithm of zero.  

(3). The stock-based measure of AI patents is referred to as AI stock (AI Stock). 
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Table 2. AI on Drugs: AIIC and Number of Drugs 

 (1) (2) (3) 

DV ln(Number 

of Drugs) 

ln(Number of 

Drugs) 

ln(Number of 

Drugs) 

    

AIIC 0.0301*** 0.0332***  

 (0.00437) (0.00514)  

ITIC  -0.00766  

  (0.00674)  

AIIC, Machine Learning   0.0128*** 

   (0.00342) 

ln(Patent Stock) -0.00356 -0.00262 0.00410 

 (0.00386) (0.00394) (0.00368) 

Public Status -0.0317** -0.0315** -0.0276** 

 (0.0128) (0.0128) (0.0129) 

ln(Firm Age) 0.0388*** 0.0375** 0.0365** 

 (0.0146) (0.0147) (0.0147) 
ln(Number of Employees) -0.00178 -0.00177 -0.00141 

 (0.00111) (0.00111) (0.00112) 

ln(R&D) 0.00380*** 0.00383*** 0.00375*** 

 (0.00140) (0.00140) (0.00141) 

    

Observations 4,122 4,122 4,122 

R-squared 0.836 0.836 0.834 

Year FE YES YES YES 

Firm FE YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. 

(2). Column 1 shows the results for the number of drugs discovered for preclinical trials. We take ITIC into account 

in Column 2. In Column 3, we examine how machine learning could be linked to drug discovery. The machine 

learning-based AIIC is constructed from patents and skills in job postings that are related to machine learning only.  

(3). *** p<0.01, ** p<0.05, * p<0.1 
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Table 3. AI on Drugs: AI Patents, AI Skills and Number of Drugs  

 
 (1) (2) (3) (4) (5) 

DV ln(Number of 

Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

      

ln(AI Stock) 0.0204** 0.0302***  0.0327*** 0.0330*** 

 (0.00936) (0.00654)  (0.00653) (0.00654) 

ln(AI Skills)   0.0250*** 0.0269***  

   (0.00513) (0.00513)  

ln(AI Skills, Hybrid)     0.0269*** 

     (0.00756) 

ln(AI Skills, Pure)     0.0127* 

     (0.00760) 

ln(Patent Stock) 0.0222*** -0.000576 0.00930*** -0.00219 -0.00239 

 (0.00661) (0.00404) (0.00333) (0.00404) (0.00404) 

Public Status -0.0418** -0.0282** -0.0307** -0.0322** -0.0329** 

 (0.0204) (0.0129) (0.0129) (0.0128) (0.0128) 

ln(Firm Age) 0.0434*** 0.0355** 0.0354** 0.0389*** 0.0393*** 

 (0.0143) (0.0147) (0.0147) (0.0146) (0.0146) 

ln(Number of 

Employees) 

0.00842*** -0.00167 -0.00119 -0.00171 -0.00171 

 (0.00258) (0.00112) (0.00112) (0.00112) (0.00112) 

ln(R&D) -0.00351 0.00382*** 0.00345** 0.00374*** 0.00369*** 

 (0.00285) (0.00141) (0.00140) (0.00140) (0.00140) 

      

Observations 4,170 4,122 4,122 4,122 4,122 

R-squared 0.857 0.835 0.835 0.836 0.836 

Year FE YES YES YES YES YES 

Firm FE YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. 

(2). We separately estimate the effect of each main component of our AIIC—AI patents and AI skills—on the 

discovery of drugs for preclinical studies. The stock-based measure of AI patents is referred to as AI stock (AI 

Stock). As our patent data are available prior to 2010, in Column 1, we estimate the effect of AI stock prior to 2010 

and Column 2 estimates the effect after 2010.  

(3). We examine the effect of AI skills in Column 3, and the effect of AI stock and AI skills together in Column 4. 

In Column 5, we segregate AI skills into those requiring a hybrid of AI skills and domain knowledge (AI Skills, 

Hybrid) and those requiring only AI skills without domain knowledge (AI Skills, Pure), and we estimate their effects 

as well. 

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. AI on Drugs:  

AIIC, Number of Drugs with Known Mechanisms, and Novelty of Drugs 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number 

of Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

AIIC 0.0301*** 0.0280*** 0.00305 0.00452 0.0281*** 0.00162 

 (0.00437) (0.00426) (0.00195) (0.00299) (0.00405) (0.00149) 

ln(Patent Stock) -0.00356 -0.000710 -0.00277 0.00161 -0.00326 -0.000574 

 (0.00386) (0.00376) (0.00172) (0.00264) (0.00357) (0.00131) 

Public Status -0.0317** -0.0254** -0.00612 0.00934 -0.0383*** -0.00402 

 (0.0128) (0.0125) (0.00571) (0.00879) (0.0119) (0.00436) 

ln(Firm Age) 0.0388*** 0.0359** 0.00352 -0.00231 0.0481*** 0.000707 

 (0.0146) (0.0143) (0.00651) (0.0100) (0.0136) (0.00497) 

ln(Number of Employees) -0.00178 -0.00199* 3.61e-05 -0.000664 -0.00211** 0.000398 

 (0.00111) (0.00109) (0.000497) (0.000764) (0.00103) (0.000379) 

ln(R&D) 0.00380*** 0.00323** 0.000861 0.00131 0.00287** 0.000320 

 (0.00140) (0.00137) (0.000624) (0.000960) (0.00130) (0.000476) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

R-squared 0.836 0.834 0.422 0.643 0.828 0.475 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. 

(2). Column 1 shows the results for the number of drugs discovered for preclinical trials. We examine the number of 

drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the estimates for the drugs with chemical novelty scores in a specific range. Three ranges are 

created: incremental drugs with novelty score between 0 and 0.3, medium-novel drugs with novelty score between 

0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table 5. AI on Drugs, 2SLS 

 
 (1) (2) (3) (4) (5) (6) 

DV ln(Number 

of Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty: 

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

AIIC 0.0779** 0.0753** 0.00749 0.0189 0.0916** -0.0122 

 (0.0375) (0.0362) (0.00833) (0.0155) (0.0414) (0.00967) 

ln(Patent Stock) -0.0251 -0.0220 -0.00477 -0.00489 -0.0319* 0.00566 

 (0.0165) (0.0154) (0.00546) (0.00672) (0.0181) (0.00413) 

Public Status -0.0389* -0.0326 -0.00679* 0.00715 -0.0480*** -0.00192 

 (0.0206) (0.0208) (0.00406) (0.00906) (0.0186) (0.00485) 

ln(Firm Age) 0.0489** 0.0458** 0.00445 0.000726 0.0615*** -0.00221 

 (0.0195) (0.0191) (0.00402) (0.00903) (0.0217) (0.00639) 

ln(Number of Employees) -0.00273* -0.00293* -5.20e-05 -0.000951 -0.00337** 0.000673 

 (0.00160) (0.00156) (0.000339) (0.000848) (0.00146) (0.000516) 

ln(R&D) 0.00421*** 0.00364*** 0.000899** 0.00143* 0.00342*** 0.000200 

 (0.00123) (0.00117) (0.000358) (0.000760) (0.00124) (0.000313) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. 

(2). We use the total number of neighboring firms with AIIC to instrument for a focal firm’s AIIC. We also use two 

variations of these instrumental variables: (1) the average number of AI patents in the neighboring firms; (2) the 

average ratio of a firm’s AI patents to total patents for these neighbors. The associated first-stage F-statistic (15.4) is 

above the threshold of passing the weak instrument test.  

(3). The effect of AIIC on drugs with or without known mechanisms of impact is reported in Column 2-3. Column 

4-6 shows the estimates on the effects of AIIC on incremental drugs, medium-novel drugs and highly novel drugs.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 
 

1. Chemical similarities and novelty of drugs 

 

We measure the chemical similarity of two molecules by drawing on a central concept in 

chemistry, the “Similarity Property Principle”. It states that structurally similar molecules should 

also have similar physicochemical properties and biological activities (Johnson and Maggiora 

1990). We measure drug similarities by finding their maximum common substructure (MCS), a 

characteristic which can be used to differentiate novel chemical compounds that could 

potentially offer novel treatments from incremental compounds that are derivatives of existing 

drugs. We calculate the similarities of our focal drugs to all prior drugs and take the maximum 

pair-wise score to be the similarity score of the focal drug.13  

Specifically, we calculate the pair-wise similarity score between any two drugs, X and Y, 

using the “Tanimoto coefficient”, which is the ratio of the atoms in MCS that appears in both X 

and Y and all atoms that appear in both (Cao et al. 2008; Krieger et al. 2018; Nikolova and 

Jaworska 2003):14  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑋,𝑌 =  
𝑁𝑋&𝑌

𝑁𝑋+ 𝑁𝑌− 𝑁𝑋&𝑌
,  (1) 

where 𝑁𝑋 and 𝑁𝑌 are the total number of atoms in chemical structures of drug X and drug Y 

respectively, and 𝑁𝑋&𝑌  is the total number of atoms in MCS that appears in both drugs X and 

Y.15 Thus, a similarity score of zero means that the two drugs have no common components. A 

 
13 As robustness checks, we also restrict the previous drugs to be those within a certain time range, so that our 

novelty score does not automatically decrease for irrelevant structural reasons as the base of comparison becomes 

larger over time. Our results using a 5-year range are similar. 
14 Conventionally, any non-hydrogen atoms are included for computation. Our drug data provide the simplified 

molecular-input line-entry system (SMILES) code, which is a chemical notation language mainly designed for 

digital processing (Weininger 1988). We convert the SMILES code of each drug to its graph representation and use 

the graph to compute pair-wise similarity scores. 
15 MCS is one of the most accurate ways to calculate similarity and additionally provides a more flexible and 

efficient way of identifying important local structures (Cao et al. 2008). Although many algorithms can compute 

MCS in general graphs (Conte et al. 2004), they can’t be applied to the study of chemical structures that tend to be 

represented as small and sparse graphs. Thus, we use a novel backtracking graph-matching algorithm to pinpoint the 
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similarity score of 1 indicates that they have the same set of atoms and bonding, although it does 

not imply that the two molecules are identical because MCS does not take into account the 

orientation in space of each molecule. Although different orientations could give them different 

chemical properties, they are still more similar on average to each other than to other 

compounds. Because similarity is highly correlated with chemical novelty, it is widely used to 

screen for groups of related drugs, and to digitally quantify certain chemical properties without 

human or animal testing (Wawer et al. 2014).  

 For example, we show the similarity of two drugs, Imatinib mesylate16 and Bafetinib,17 

with their MCS highlighted in colors (see Figure A1). Imatinib mesylate is a first-generation 

tyrosine kinase inhibitor for treating chronic myelogenous leukemia (CML). Bafetinib is 

developed as a more powerful treatment and an alternative for patients who have become 

resistant to Imatinib mesylate. In terms of the size of their chemical structures, they both contain 

42 atoms in total, with 35 of them appearing in the MCS. Therefore, their pair-wise similarity 

score is calculated as 

35

42+42−35
= 0.714. 

This suggests 71.4% of their chemical substructure is common. After all pair-wise drug 

similarity scores are calculated, we can derive the maximum similarity score to all previously 

developed drug candidates and subtract it from 1 to calculate the novelty score. To identify a set 

of previously developed drugs, we use the time that development of the drug first began, and 

 
MCS in our chemical graph representations. The core idea of this algorithm is to identify and enumerate all possible 

combinations of a node (for atom)/edge (for bond) mapping for a pair of chemical graphs, and then arrange these 

mappings into a tree-like representation with the leaf being the largest set of node/edge correspondences. The 

generated common substructure from this approach is then the largest overlap between the graphs of the chemical 

structures for our drugs. Our MCS approach eliminates any mismatches and is thus rigidly identified; it provides a 

lower bound for the pair-wise similarity score (Wang et al. 2013). 
16 PubChem profile of Imatinib mesylate: https://pubchem.ncbi.nlm.nih.gov/compound/Imatinib_mesylate 
17 PubChem profile of Bafetinib: https://pubchem.ncbi.nlm.nih.gov/compound/859212-16-1 
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thus the novelty measure is based on the ex-ante chemical structure at the earliest development 

stage.  

𝐷𝑟𝑢𝑔 𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑖 = 1 − max
𝑗∈𝑃𝑖

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑗,  (2) 

where 𝑃𝑖 is all drug candidates that have reached at least the Phase I stage of clinical trials prior 

to the initial development of the focal drug i (Krieger et al. 2018). Therefore, a novel drug 

candidate should have a higher novelty score and is likely to possess a molecular structure that is 

distinct from previous drug candidates.18 Figure A2 plots the distribution of the drug novelty 

scores. Consistent with findings in Krieger et al. (2018), the novelty score can capture a 

substantial number of variations in drug novelty and it has been extensively tested to show its 

effects on drug risks, revenues, and impact. Overall, while more novel drugs are less likely to be 

approved by the FDA, those that are approved are more likely to be clinically effective, generate 

more valuable patents, and have a higher impact on the firm’s market cap than are more 

incremental drugs (Krieger et al 2018). 

 
                    Drug name: Imatinib Mesylate            Drug name: Bafetinib 

                    Molecular formula: C30H35N7O4S     Molecular formula: C30H31F3N8O 

 
18 Krieger et al. (2018) discuss several limitations to the Tanimoto similarity metric, but it is still widely used for 

measuring drug novelty. Often the chemical properties of the most similar compound are used to estimate a newly 

discovered compound. Despite the broad coverage of drug information in our drug databases, we may still miss 

drugs at the earliest stage of development that are not recorded in the database. We address this issue by using a 

rolling 5-year window to compare a drug to prior drug candidates that have reached at least the Phase I stage of 

clinical trials. 
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Figure A1. Visualization of the chemical structures of two drugs: Imatinib Mesylate (left part of the plot) and 

Bafetinib (right part of the plot) as well as their maximum common substructure highlighted in red. For simplicity 

and clarity of visualization, the skeletal structural representation of chemical compounds is shown featuring the 

unlabeled attachment of hydrogen atoms to carbon atoms represented by the vertices of line segment for bonding 

together. Those atoms other than hydrogen and carbon are explicitly labeled in vertices (e.g., N, S, F). The octet rule 

in chemistry is satisfied to determine number of hydrogens attached to carbon atoms and number of line segments 

bonding the atoms. For the identification of maximum common substructure in a pair of chemical compounds, we 

perform an exact matching without allowing any atom or bond mismatches to be reflected in this visualization.  

 

 

 
 
Figure A2. Histogram of novelty scores of drugs with SMILES information developed after 1995 from our drug 

databases.  

 

2. A dictionary of exemplar keywords to identify AI-related patents and skills (normalized into 

lower case) 
 

 
3d imaging  data mining  genetic 

algorithm  

machine 

learning  

neural network  semantic 

analysis  

adaboost  decision tree  graphical model  maximum 

entropy  

pattern 

recognition  

stochastic 

gradient descent  

anomaly 

detection  

deep learning  hidden markov  maximum a 

posteriori  

predictive 

analysis  

supervised 

learning  

artificial 

intelligence  

defuzzification  hyperspectral 

imaging  

maximum 

likelihood  

predictive model  support vector 

machine  

cloud computing  dimensionality 

reduction  

inference engine  mechatronic  pytorch symbolic 

reasoning 

cluster analysis  expert system  logic program motif discovery  random forest  tensorflow 

computer vision feature selection  logic system motion capture reinforcement 

learning 

unsupervised 

learning  

conditional 

random field 

fuzzy logic  machine 

intelligence 

natural language robot xgboost  
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3. Full sample analysis: estimations on the effect of AIIC on compound discovery for developing 

new drugs for all firms including those without AIIC 

 

To generate the full sample of all the bio-pharma firms obtained from our drug dataset, 

we first aggregate patent records at the firm-year level and then match the firm-year pairs to the 

drug dataset. We assign zero to the number of drugs to a patent filing firm in a particular year if 

it developed no drugs that year. For example, if a bio-pharma firm A filed a patent in year 2016, 

but did not develop any drug in 2016, the number of drugs of firm A in the year 2016 is zero. 

However, in our data, we cannot reliably distinguish missing data from cases where a firm 

developed no drug in that year. This may artificially inflate the correlations among drug-related 

variables because a firm producing zero drugs in a given year would have zero level on any of 

the drug properties. Thus, when we calculate the correlations among drug-related variables, we 

restrict the observations to when the number of drugs developed is greater than zero. When 

possible, we also use a dummy to control for missing values in the data. The firm fixed effect 

and year fixed effect in our regression specification can also alleviate the concern about missing 

drug development records across the years.  
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Table A1. AI on Drugs:  

AIIC (AI Patents and AI Skills) and Number of Drugs  
 

 (1) (2) (3) (4) (5) 

DV ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

ln(Number 

of Drugs) 

      

AIIC 0.0220*** 0.0261***    

 (0.00368) (0.00494)    

ITIC  -0.00678    

  (0.00545)    

AIIC, Machine Learning   0.00941***   

   (0.00324)   

ln(AI Stock)    0.0313*** 0.0313*** 

    (0.00692) (0.00692) 

ln(AI Skills)    0.0146***  

    (0.00344)  

ln(AI Skills, Hybrid)     0.0120** 

     (0.00497) 

ln(AI Skills, Pure)     0.00932* 

     (0.00523) 

ln(Patent Stock) -0.000146 0.000458 0.00321 -0.000841 -0.000826 

 (0.00291) (0.00295) (0.00287) (0.00303) (0.00304) 

Public Status 0.00329 0.00343 0.00505 0.00355 0.00363 

 (0.00727) (0.00727) (0.00727) (0.00728) (0.00728) 

ln(Firm Age) 0.0329*** 0.0327*** 0.0322*** 0.0334*** 0.0334*** 

 (0.00989) (0.00989) (0.00992) (0.00991) (0.00992) 

ln(Number of Employees) -0.000348 -0.000329 -0.000167 -0.000364 -0.000363 

 (0.000814) (0.000814) (0.000815) (0.000815) (0.000815) 

ln(R&D) 0.00196** 0.00198** 0.00198** 0.00198** 0.00197** 

 (0.000808) (0.000808) (0.000809) (0.000809) (0.000809) 

      

Observations 14,183 14,183 14,183 14,183 14,183 

R-squared 0.641 0.641 0.640 0.641 0.641 

Year FE YES YES YES YES YES 

Firm FE YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We take ITIC into account in Column 2. In Column 3, we examine how machine learning could be 

linked to drug discovery. The machine learning type of AIIC is constructed based on machine learning-related 

patents and skills in job postings.  

(3). In Column 4-5, we estimate the effect of each main component of our AIIC—AI patents and AI skills—on the 

drugs discovered for preclinical studies. The stock-based measure of AI patents is referred to as AI stock (AI Stock). 

In Column 5, we segregate AI skills into those requiring a hybrid of AI skills and domain knowledge (AI Skills, 

Hybrid) and those requiring only AI skills without domain knowledge (AI Skills, Pure), and we estimate their effects 

as well.  

(4). *** p<0.01, ** p<0.05, * p<0.1  
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Table A2. AI on Drugs:  

AIIC, Number of Drugs with Known Mechanisms, and Novelty of Drugs 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number of 

Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty: 0-

0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

AIIC 0.0220*** 0.0207*** 0.00165 0.00398 0.0205*** 0.000694 

 (0.00368) (0.00353) (0.00133) (0.00262) (0.00283) (0.000901) 

ln(Patent Stock) -0.000146 0.000502 -0.000508 0.00342* -0.00249 -0.000859 

 (0.00291) (0.00279) (0.00105) (0.00208) (0.00224) (0.000713) 

Public Status 0.00329 -0.00386 0.00743*** 0.00279 -0.00382 0.00137 

 (0.00727) (0.00697) (0.00263) (0.00519) (0.00559) (0.00178) 

ln(Firm Age) 0.0329*** 0.0270*** 0.00767** 0.00540 0.0289*** 0.000174 

 (0.00989) (0.00948) (0.00358) (0.00706) (0.00760) (0.00242) 

ln(Number of 

Employees) 

-0.000348 -0.000850 0.000439 7.89e-05 -0.00116* 0.000362* 

 (0.000814) (0.000781) (0.000295) (0.000581) (0.000626) (0.000199) 

ln(R&D) 0.00196** 0.00182** 0.000318 0.000398 0.00157** 0.000135 

 (0.000808) (0.000775) (0.000293) (0.000577) (0.000621) (0.000198) 

       

Observations 14,183 14,183 14,183 14,183 14,183 14,183 

R-squared 0.641 0.640 0.438 0.513 0.678 0.439 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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There could be selection biases towards firms choosing to invest more in AI. To address 

this concern, we use the Propensity Score Matching (PSM) and Coarsened Exact Matching 

(CEM) method to match AI and non-AI firms based on the firm characteristics including 

financial ownership status, firm age, total number of employees and R&D expenses (Blackwell 

et al. 2009; Ho et al. 2007; Rosenbaum and Rubin 1983). Therefore, firms that exhibit similar 

characteristics without AIIC could be added into our AI firm sample for estimations.  

Table A3. AI on Drugs:  

AIIC, Number of Drugs with Known Mechanisms, and Novelty of Drugs (PSM) 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number 

of Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty: 

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs,  

Novelty: 

0.7-1) 

       

AIIC 0.0313*** 0.0297*** 0.00227 0.00474 0.0293*** 0.00118 

 (0.00462) (0.00451) (0.00175) (0.00304) (0.00411) (0.00141) 

ln(Patent Stock) -0.00473 -0.00257 -0.00204 0.00224 -0.00471 -0.00101 

 (0.00400) (0.00390) (0.00151) (0.00263) (0.00355) (0.00122) 

Public Status -0.0390*** -0.0337*** -0.00623 -0.00200 -0.0397*** 0.00157 

 (0.0124) (0.0121) (0.00471) (0.00818) (0.0110) (0.00380) 

ln(Firm Age) 0.0484*** 0.0453*** 0.00376 0.00630 0.0501*** 0.000564 

 (0.0156) (0.0152) (0.00592) (0.0103) (0.0139) (0.00478) 

ln(Number of Employees) -0.00131 -0.00153 0.000110 -0.000458 -0.00189* 0.000519 

 (0.00119) (0.00116) (0.000451) (0.000782) (0.00106) (0.000364) 

ln(R&D) 0.00467*** 0.00427*** 0.000662 0.00150* 0.00330*** 0.000283 

 (0.00139) (0.00135) (0.000525) (0.000912) (0.00123) (0.000424) 

       

Observations 5,775 5,775 5,775 5,775 5,775 5,775 

R-squared 0.794 0.792 0.513 0.676 0.786 0.467 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. Column 1-6 shows the results estimated by 

utilizing the propensity score matching approach on the sample that includes both firms with AIIC and firms 

without.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies. We examine the number 

of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table A4. AI on Drugs:  

AIIC, Number of Drugs with Known Mechanisms, and Novelty of Drugs (CEM) 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number 

of Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

AIIC 0.0310*** 0.0284*** 0.00290 0.00323 0.0277*** 0.00149 

 (0.00578) (0.00559) (0.00189) (0.00379) (0.00459) (0.00144) 

ln(Patent Stock) -0.000966 0.00112 -0.00238 -0.000412 -0.000997 1.15e-05 

 (0.00550) (0.00533) (0.00180) (0.00361) (0.00437) (0.00137) 

Public Status 0.00365 -0.00560 0.00853* 0.00557 -0.00405 0.00303 

 (0.0134) (0.0130) (0.00438) (0.00879) (0.0106) (0.00333) 

ln(Firm Age) 0.00478 0.00258 0.00291 0.00209 0.00598 -0.00396 

 (0.0177) (0.0171) (0.00578) (0.0116) (0.0140) (0.00440) 

ln(Number of Employees) -0.000212 -0.000939 0.000622 -9.20e-05 -0.000939 0.000458 

 (0.00140) (0.00136) (0.000459) (0.000920) (0.00111) (0.000349) 

ln(R&D) 0.00194 0.00188 0.000374 -0.000776 0.00269** 0.000361 

 (0.00139) (0.00134) (0.000454) (0.000909) (0.00110) (0.000345) 

       

Observations 5,938 5,938 5,938 5,938 5,938 5,938 

R-squared 0.674 0.671 0.500 0.604 0.689 0.562 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. Column 1-6 shows the results from the 

coarsened exact matching method on the sample that includes both firms with AIIC and firms without.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies. We examine the number 

of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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4. Estimations on the effect of AIIC on number of drugs using Poisson regressions 

 

Table A5. AI on Drugs, Poisson Regressions 
 

 (1) (2) (3) (4) (5) (6) 

DV Number of 

Drugs 

Number of 

Drugs with 

Known 

Mechanisms 

Number of 

Drugs without 

Known 

Mechanisms 

Number of 

Drugs, 

Novelty: 

0-0.3 

Number of 

Drugs, 

Novelty: 

0.3-0.7 

Number of 

Drugs, 

Novelty: 

0.7-1 

       

AIIC 0.509*** 0.484*** 1.118 0.311 0.633*** 0.738 

 (0.150) (0.153) (0.721) (0.509) (0.161) (1.726) 

ln(Patent Stock) -0.216 -0.112 -0.992* -1.036 -0.124 -2.393 

 (0.162) (0.180) (0.540) (0.716) (0.170) (1.513) 

Public Status -0.0995 -0.0230 -13.95 1.048* -2.112*** 1.150 

 (0.362) (0.374) (1,350) (0.564) (0.781) (1.466) 

ln(Firm Age) 1.472*** 1.415*** -1.136 0.406 2.734*** -0.535 

 (0.503) (0.522) (1.271) (0.998) (0.673) (1.997) 

ln(Number of Employees) 0.0202 0.0116 0.370 -0.146 0.0997 0.0279 

 (0.0553) (0.0566) (0.283) (0.113) (0.0997) (0.221) 

ln(R&D) 0.0328 0.0132 0.392 -0.201 0.0228 0.655 

 (0.0660) (0.0670) (0.458) (0.159) (0.0721) (0.901) 

       

Note:  

(1). We perform Poisson regressions that model the raw number of drugs discovered for preclinical studies on the 

same sample (N=4,122) as shown in the main body of the paper. Each drug used in the analysis has a known 

chemical structure.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies. We examine the number 

of drugs with or without known mechanisms in Column 2 and Column 3. Column 4-6 looks into three ranges of 

chemical novelty scores based on the chemical structures of drugs.  

(3). *** p<0.01, ** p<0.05, * p<0.1 
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5. Estimations on the effect of AI patents and AI skills on number of drugs with known 

mechanisms and novelty of drugs (for firms with AIIC)  

 

We show the effect of AI patents and AI skills separately. Table A6 estimates the effect 

of AI patents. Tables A7 and Table A8 estimate the effect of hybrid and pure AI skills 

respectively. Table A9 shows the estimates about the effect of AI patents and two measures of 

AI skills together. 

 

Table A6. AI on Drugs:  

AI Patents, Number of Drugs with Known Mechanisms, and Novelty of Drugs 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number of 

Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

ln(AI Stock) 0.0302*** 0.0268*** 0.00478* 0.00716 0.0258*** 0.00191 

 (0.00654) (0.00638) (0.00290) (0.00447) (0.00606) (0.00222) 

ln(Patent Stock) -0.000576 0.00249 -0.00307* 0.00114 0.000362 -0.000513 

 (0.00404) (0.00394) (0.00179) (0.00276) (0.00375) (0.00137) 

Public Status -0.0282** -0.0221* -0.00583 0.00976 -0.0350*** -0.00385 

 (0.0129) (0.0125) (0.00570) (0.00878) (0.0119) (0.00436) 

ln(Firm Age) 0.0355** 0.0327** 0.00336 -0.00255 0.0448*** 0.000557 

 (0.0147) (0.0143) (0.00651) (0.0100) (0.0136) (0.00497) 

ln(Number of Employees) -0.00167 -0.00186* 1.98e-05 -0.000690 -0.00197* 0.000400 

 (0.00112) (0.00109) (0.000497) (0.000765) (0.00104) (0.000380) 

ln(R&D) 0.00382*** 0.00323** 0.000879 0.00133 0.00287** 0.000323 

 (0.00141) (0.00137) (0.000624) (0.000960) (0.00130) (0.000476) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

R-squared 0.835 0.833 0.422 0.643 0.826 0.475 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. The stock-based measure of AI patents is 

referred to as AI stock (AI Stock). 

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table A7. AI on Drugs:  

Hybrid AI Skills, Number of Drugs with Known Mechanisms, and Novelty of Drugs  
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number of 

Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number of 

Drugs, 

Novelty: 0.3-

0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

ln(AI Skills, Hybrid) 0.0307*** 0.0304*** 0.000398 -0.000145 0.0327*** 0.00203 

 (0.00650) (0.00633) (0.00288) (0.00444) (0.00602) (0.00220) 

ln(Patent Stock) 0.00928*** 0.0112*** -0.00141 0.00365 0.00860*** 0.000107 

 (0.00333) (0.00325) (0.00148) (0.00228) (0.00309) (0.00113) 

Public Status -0.0316** -0.0256** -0.00571 0.0100 -0.0389*** -0.00408 

 (0.0129) (0.0126) (0.00572) (0.00880) (0.0119) (0.00437) 

ln(Firm Age) 0.0347** 0.0322** 0.00291 -0.00328 0.0446*** 0.000517 

 (0.0147) (0.0143) (0.00651) (0.0100) (0.0136) (0.00497) 

ln(Number of Employees) -0.00123 -0.00148 9.60e-05 -0.000574 -0.00160 0.000428 

 (0.00112) (0.00109) (0.000495) (0.000762) (0.00103) (0.000378) 

ln(R&D) 0.00337** 0.00282** 0.000832 0.00127 0.00245* 0.000294 

 (0.00140) (0.00137) (0.000624) (0.000960) (0.00130) (0.000476) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

R-squared 0.835 0.833 0.422 0.643 0.827 0.475 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. 

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table A8. AI on Drugs:  

Pure AI Skills, Number of Drugs with Known Mechanisms, and Novelty of Drugs  
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number of 

Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number of 

Drugs, 

Novelty: 0.3-

0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

ln(AI Skills, Pure) 0.0253*** 0.0243*** 0.00163 0.00236 0.0259*** 0.00117 

 (0.00656) (0.00639) (0.00291) (0.00447) (0.00607) (0.00222) 

ln(Patent Stock) 0.00959*** 0.0115*** -0.00142 0.00361 0.00896*** 0.000136 

 (0.00333) (0.00325) (0.00148) (0.00228) (0.00309) (0.00113) 

Public Status -0.0282** -0.0222* -0.00573 0.00992 -0.0352*** -0.00383 

 (0.0129) (0.0126) (0.00571) (0.00878) (0.0119) (0.00436) 

ln(Firm Age) 0.0355** 0.0329** 0.00307 -0.00298 0.0453*** 0.000505 

 (0.0147) (0.0143) (0.00651) (0.0100) (0.0136) (0.00497) 

ln(Number of 

Employees) 

-0.00110 -0.00135 0.000102 -0.000566 -0.00147 0.000435 

 (0.00112) (0.00109) (0.000495) (0.000762) (0.00103) (0.000378) 

ln(R&D) 0.00353** 0.00298** 0.000834 0.00127 0.00262** 0.000305 

 (0.00141) (0.00137) (0.000623) (0.000959) (0.00130) (0.000476) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

R-squared 0.834 0.833 0.422 0.643 0.826 0.475 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure.  

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 
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Table A9. AI on Drugs:  

AI Patents, Hybrid AI Skills, Pure AI Skills, Number of Drugs with Known Mechanisms, 

and Novelty of Drugs 
 

 (1) (2) (3) (4) (5) (6) 

DV ln(Number of 

Drugs) 

ln(Number of 

Drugs with 

Known 

Mechanisms) 

ln(Number of 

Drugs without 

Known 

Mechanisms) 

ln(Number 

of Drugs, 

Novelty:  

0-0.3) 

ln(Number 

of Drugs, 

Novelty: 

0.3-0.7) 

ln(Number 

of Drugs, 

Novelty: 

0.7-1) 

       

ln(AI Stock) 0.0330*** 0.0295*** 0.00484* 0.00719 0.0286*** 0.00209 

 (0.00654) (0.00638) (0.00291) (0.00448) (0.00606) (0.00222) 

ln(AI Skills, Hybrid) 0.0269*** 0.0270*** -0.000184 -0.00123 0.0289*** 0.00212 

 (0.00756) (0.00738) (0.00337) (0.00519) (0.00701) (0.00257) 

ln(AI Skills, Pure) 0.0127* 0.0115 0.00192 0.00329 0.0121* 0.000152 

 (0.00760) (0.00742) (0.00339) (0.00522) (0.00705) (0.00259) 

ln(Patent Stock) -0.00239 0.000704 -0.00312* 0.00110 -0.00154 -0.000631 

 (0.00404) (0.00394) (0.00180) (0.00277) (0.00374) (0.00137) 

Public Status -0.0329** -0.0267** -0.00589 0.00979 -0.0399*** -0.00418 

 (0.0128) (0.0125) (0.00572) (0.00881) (0.0119) (0.00437) 

ln(Firm Age) 0.0393*** 0.0363** 0.00358 -0.00224 0.0486*** 0.000752 

 (0.0146) (0.0143) (0.00652) (0.0100) (0.0136) (0.00498) 

ln(Number of Employees) -0.00171 -0.00190* 2.57e-05 -0.000677 -0.00201* 0.000395 

 (0.00112) (0.00109) (0.000498) (0.000766) (0.00103) (0.000380) 

ln(R&D) 0.00369*** 0.00311** 0.000880 0.00134 0.00273** 0.000313 

 (0.00140) (0.00137) (0.000624) (0.000961) (0.00130) (0.000477) 

       

Observations 4,122 4,122 4,122 4,122 4,122 4,122 

R-squared 0.836 0.834 0.423 0.643 0.828 0.475 

Year FE YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 

Note:  

(1). Each drug used in the analysis has a known chemical structure. The stock-based measure of AI patents is 

referred to as AI stock (AI Stock). 

(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect 

estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.  

(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a 

specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel 

drugs with novelty score between 0.3 and 0.7, and highly novel drugs with novelty score between 0.7 and 1.  

(4). *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

References 

 
“Mechanism matters”. 2010. Nature Medicine (16:4), pp. 347-347. 

Abrams, D., and Sampat, B. 2017. "What’s the Value of Patent Citations? Evidence from 

Pharmaceuticals." 

Agrawal, A., McHale, J., and Oettl, A. 2019. "Artificial Intelligence, Scientific Discovery, and 

Commercial Innovation," Working Paper. 

Alekseeva, L., Azar, J., Gine, M., Samila, S., and Taska, B. 2019. "The Demand for Ai Skills in the Labor 
Market," Available at SSRN: https://ssrn.com/abstract=3470610). 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://ssrn.com/abstract=3470610


 52 

Aral, S., and Weill, P. 2007. "It Assets, Organizational Capabilities, and Firm Performance: How 

Resource Allocations and Organizational Differences Explain Performance Variation," 

Organization science (18:5), pp. 763-780. 

Babina, T., Fedyk, A., He, A. X., and Hodson, J. 2020. "Artificial Intelligence, Firm Growth, and Industry 

Concentration," Firm Growth, and Industry Concentration (July 14, 2020)). 

Backman, T. W., Cao, Y., and Girke, T. 2011. "Chemmine Tools: An Online Service for Analyzing and 

Clustering Small Molecules," Nucleic acids research (39:suppl_2), pp. W486-W491. 

Bardhan, I., Krishnan, V., and Lin, S. 2013. "Research Note—Business Value of Information 

Technology: Testing the Interaction Effect of It and R&D on Tobin's Q," Information Systems 

Research (24:4), pp. 1147-1161. 

Barney, J. 1991. "Firm Resources and Sustained Competitive Advantage," Journal of management (17:1), 

pp. 99-120. 

Bassellier, G., and Benbasat, I. 2004. "Business Competence of Information Technology Professionals: 

Conceptual Development and Influence on It-Business Partnerships," MIS quarterly), pp. 673-

694. 

Bernstein, S. 2015. "Does Going Public Affect Innovation?," The Journal of Finance (70:4), pp. 1365-

1403. 

Bharadwaj, A. S. 2000. "A Resource-Based Perspective on Information Technology Capability and Firm 

Performance: An Empirical Investigation," MIS quarterly), pp. 169-196. 

Blackwell, M., Iacus, S., King, G., and Porro, G. 2009. "Cem: Coarsened Exact Matching in Stata," The 

Stata Journal (9:4), pp. 524-546. 

Brown, F. K. 1998. "Chemoinformatics: What Is It and How Does It Impact Drug Discovery," Annual 

reports in medicinal chemistry (33), pp. 375-384. 

Brynjolfsson, E., Rock, D., and Syverson, C. 2018. "The Productivity J-Curve: How Intangibles 

Complement General Purpose Technologies," 0898-2937, National Bureau of Economic 

Research. 

Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., and Trench, M. 

2017. "Artificial Intelligence–the Next Digital Frontier," McKinsey Glob Institute). 

Burton-Jones, A., and Straub Jr, D. W. 2006. "Reconceptualizing System Usage: An Approach and 

Empirical Test," Information systems research (17:3), pp. 228-246. 

Cao, Y., Jiang, T., and Girke, T. 2008. "A Maximum Common Substructure-Based Algorithm for 

Searching and Predicting Drug-Like Compounds," Bioinformatics (24:13), pp. i366-i374. 

Chan, Y., and Levallet, N. 2013. "It Capabilities–Quo Vadis?,"). 

Cockburn, I. M., Henderson, R., and Stern, S. 2018. "The Impact of Artificial Intelligence on Innovation," 

National Bureau of Economic Research. 

Cohen, W. M., Nelson, R. R., and Walsh, J. P. 2000. "Protecting Their Intellectual Assets: 

Appropriability Conditions and Why Us Manufacturing Firms Patent (or Not)," National Bureau 

of Economic Research. 

Conte, D., Foggia, P., Sansone, C., and Vento, M. 2004. "Thirty Years of Graph Matching in Pattern 

Recognition," International journal of pattern recognition and artificial intelligence (18:03), pp. 

265-298. 

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. 2016. "Innovation in the Pharmaceutical Industry: 

New Estimates of R&D Costs," Journal of health economics (47), pp. 20-33. 

Dixon, J., Hong, B., and Wu, L. 2021. "The Robot Revolution: Managerial and Employment 

Consequences for Firms," Management Science:forthcoming). 

Dougherty, D., and Dunne, D. D. 2012. "Digital Science and Knowledge Boundaries in Complex 

Innovation," Organization Science (23:5), pp. 1467-1484. 

Drews, J. 2000. "Drug Discovery: A Historical Perspective," science (287:5460), pp. 1960-1964. 

Du Plessis, M., Van Looy, B., Song, X., and Magerman, T. 2009. "Data Production Methods for 

Harmonized Patent Indicators: Assignee Sector Allocation," Luxembourg: EUROSTAT Working 
Paper and Studies). 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 53 

Eklund, J. 2018. "The Knowledge-Incentive Trade-Off: Understanding the Organization Design & 

Innovation Relationship," Academy of Management Proceedings: Academy of Management 

Briarcliff Manor, NY 10510, p. 16747. 

Fleming, N. 2018. "How Artificial Intelligence Is Changing Drug Discovery," Nature (557:7707), p. S55. 

Forman, C., Goldfarb, A., and Greenstein, S. 2016. "Agglomeration of Invention in the Bay Area: Not 

Just Ict," American Economic Review (106:5), pp. 146-151. 

Gilchrist, D. S. 2016. "Patents as a Spur to Subsequent Innovation? Evidence from Pharmaceuticals," 

American Economic Journal: Applied Economics (8:4), pp. 189-221. 

Grant, R. M. 1991. "The Resource-Based Theory of Competitive Advantage: Implications for Strategy 

Formulation," California management review (33:3), pp. 114-135. 

Griliches, Z., Pakes, A., and Hall, B. H. 1986. "The Value of Patents as Indicators of Inventive Activity." 

National Bureau of Economic Research Cambridge, Mass., USA. 

Hall, B. H. 1990. "The Manufacturing Sector Master File: 1959-1987," National Bureau of Economic 

Research. 

Hall, B. H., Jaffe, A., and Trajtenberg, M. 2005. "Market Value and Patent Citations," RAND Journal of 

economics), pp. 16-38. 

Hall, B. H., Jaffe, A. B., and Trajtenberg, M. 2001. "The Nber Patent Citation Data File: Lessons, Insights 

and Methodological Tools," National Bureau of Economic Research. 

Hammer, M. 1990. "Reengineering Work: Don't Automate, Obliterate," Harvard Business Review (68:4), 

pp. 104-112. 

He, K., Zhang, X., Ren, S., and Sun, J. 2015. "Delving Deep into Rectifiers: Surpassing Human-Level 

Performance on Imagenet Classification," Proceedings of the IEEE international conference on 

computer vision, pp. 1026-1034. 

Hemphill, C. S., and Sampat, B. N. 2011. "When Do Generics Challenge Drug Patents?," Journal of 

Empirical Legal Studies (8:4), pp. 613-649. 

Hess, A. M., and Rothaermel, F. T. 2011. "When Are Assets Complementary? Star Scientists, Strategic 

Alliances, and Innovation in the Pharmaceutical Industry," Strategic Management Journal (32:8), 

pp. 895-909. 

Hitt, L., Wu, L., Campbell, K., Jeafarqomi, K., Ashtiani, H., and Levesque, L. 2018. "Corporate Data 

Literacy: Scoring Firms and Firm Performance," IHS Markit. 

Ho, D. E., Imai, K., King, G., and Stuart, E. A. 2007. "Matching as Nonparametric Preprocessing for 

Reducing Model Dependence in Parametric Causal Inference," Political analysis (15:3), pp. 199-

236. 

Hu, J., Shen, L., and Sun, G. 2018. "Squeeze-and-Excitation Networks," Proceedings of the IEEE 

conference on computer vision and pattern recognition, pp. 7132-7141. 

Hughes, J. P., Rees, S., Kalindjian, S. B., and Philpott, K. L. 2011. "Principles of Early Drug Discovery," 

British journal of pharmacology (162:6), pp. 1239-1249. 

Jayaraj, S., and Gittelman, M. 2018. "Scientific Maps and Innovation: Impact of the Human Genome on 

Drug Discovery." Doctoral dissertation, Rutgers University. 

Johnson, M. A., and Maggiora, G. M. 1990. Concepts and Applications of Molecular Similarity. Wiley. 

Jones, C. I. 2005. "Growth and Ideas," in Handbook of Economic Growth. Elsevier, pp. 1063-1111. 

Joshi, K. D., Chi, L., Datta, A., and Han, S. 2010. "Changing the Competitive Landscape: Continuous 

Innovation through It-Enabled Knowledge Capabilities," Information Systems Research (21:3), 

pp. 472-495. 

Kapoor, R., and Klueter, T. 2015. "Decoding the Adaptability–Rigidity Puzzle: Evidence from 

Pharmaceutical Incumbents’ Pursuit of Gene Therapy and Monoclonal Antibodies," academy of 

management journal (58:4), pp. 1180-1207. 

Kearns, G. S., and Sabherwal, R. 2006. "Strategic Alignment between Business and Information 

Technology: A Knowledge-Based View of Behaviors, Outcome, and Consequences," Journal of 

management information systems (23:3), pp. 129-162. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 54 

Kleis, L., Chwelos, P., Ramirez, R. V., and Cockburn, I. 2012. "Information Technology and Intangible 

Output: The Impact of It Investment on Innovation Productivity," Information Systems Research 

(23:1), pp. 42-59. 

Krieger, J. L., Li, D., and Papanikolaou, D. 2018. "Developing Novel Drugs," National Bureau of 

Economic Research. 

Levin, R. C., Klevorick, A. K., Nelson, R. R., Winter, S. G., Gilbert, R., and Griliches, Z. 1987. 

"Appropriating the Returns from Industrial Research and Development," Brookings papers on 

economic activity (1987:3), pp. 783-831. 

Liang, V. 2020. "Baidu’s Ai-Related Patented Technologies: Doing Battle with Covid-19," in: Wipo 

Magazine. Geneva, Switzerland: Wipo. 

Magerman, T., Van Looy, B., and Song, X. 2006. "Data Production Methods for Harmonized Patent 

Statistics: Patentee Name Harmonization,"). 

Mak, K.-K., and Pichika, M. R. 2019. "Artificial Intelligence in Drug Development: Present Status and 

Future Prospects," Drug discovery today (24:3), pp. 773-780. 

Marchant, J. 2020. "Powerful Antibiotics Discovered Using Ai," Nature). 

Marcus, G., and Davis, E. 2019. Rebooting Ai: Building Artificial Intelligence We Can Trust. Pantheon. 

Markman, G. D., Espina, M. I., and Phan, P. H. 2004. "Patents as Surrogates for Inimitable and Non-

Substitutable Resources," Journal of management (30:4), pp. 529-544. 

Nikolova, N., and Jaworska, J. 2003. "Approaches to Measure Chemical Similarity–a Review," QSAR & 

Combinatorial Science (22:9‐10), pp. 1006-1026. 

Nonaka, I., and Von Krogh, G. 2009. "Perspective—Tacit Knowledge and Knowledge Conversion: 

Controversy and Advancement in Organizational Knowledge Creation Theory," Organization 

science (20:3), pp. 635-652. 

Pisano, G. P. 2006. Science Business: The Promise, the Reality, and the Future of Biotech. Harvard 

Business Press. 

Rajkumar, S. V. 2020. "The High Cost of Prescription Drugs: Causes and Solutions." Nature Publishing 

Group. 

Ravichandran, T., Han, S., and Mithas, S. 2017. "Mitigating Diminishing Returns to R&D: The Role of 

Information Technology in Innovation," Information Systems Research (28:4), pp. 812-827. 

Raymond, P., Yoav, S., Erik, B., Jack, C., John, E., Barbara, G., Terah, L., James, M., Saurabh, M., and 

Carlos, N. J. 2019. "The Ai Index 2019 Annual Report," AI Index Steering Committee, Human-

Centered AI Institute, Stanford University. 

Romer, P. M. 1990. "Endogenous Technological Change," Journal of political Economy (98:5, Part 2), 

pp. S71-S102. 

Rosenbaum, P. R., and Rubin, D. B. 1983. "The Central Role of the Propensity Score in Observational 

Studies for Causal Effects," Biometrika (70:1), pp. 41-55. 

Rotman, D. 2019. "Ai Is Reinventing the Way We Invent," MIT Technology Review). 

Santhanam, R., and Hartono, E. 2003. "Issues in Linking Information Technology Capability to Firm 

Performance," MIS quarterly), pp. 125-153. 

Scannell, J. W., Blanckley, A., Boldon, H., and Warrington, B. 2012. "Diagnosing the Decline in 

Pharmaceutical R&D Efficiency," Nature reviews Drug discovery (11:3), p. 191. 

Smietana, K., Siatkowski, M., and Møller, M. 2016. "Trends in Clinical Success Rates," Nature Reviews 

Drug Discovery (15:6), pp. 379-380. 

Smith, W. 2020. "How Atomwise Uses Artificial Intelligence for Drug Discovery."    

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., 

French, S., Carfrae, L. A., and Bloom-Ackerman, Z. 2020. "A Deep Learning Approach to 

Antibiotic Discovery," Cell (180:4), pp. 688-702. e613. 

Tambe, P., and Hitt, L. M. 2012. "The Productivity of Information Technology Investments: New 

Evidence from It Labor Data," Information Systems Research (23:3-part-1), pp. 599-617. 
Tambe, P., Hitt, L. M., Rock, D., and Brynjolfsson, E. 2019. "It, Ai and the Growth of Intangible 

Capital," Available at SSRN 3416289). 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 55 

Teece, D. J. 1998. "Capturing Value from Knowledge Assets: The New Economy, Markets for Know-

How, and Intangible Assets," California management review (40:3), pp. 55-79. 

Trafton, A. 2020. "Artificial Intelligence Yields New Antibiotic," in: MIT News. 

Tu, Y. 2011. "The Discovery of Artemisinin (Qinghaosu) and Gifts from Chinese Medicine," Nature 

medicine (17:10), p. 1217. 

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, 

P., and Spitzer, M. 2019. "Applications of Machine Learning in Drug Discovery and 

Development," Nature Reviews Drug Discovery), p. 1. 

Varian, H. 2018. "Artificial Intelligence, Economics, and Industrial Organization," 0898-2937, National 

Bureau of Economic Research. 

Von Hippel, E. 1994. "“Sticky Information” and the Locus of Problem Solving: Implications for 

Innovation," Management science (40:4), pp. 429-439. 

Wang, Y., Backman, T. W., Horan, K., and Girke, T. 2013. "Fmcsr: Mismatch Tolerant Maximum 

Common Substructure Searching in R," Bioinformatics (29:21), pp. 2792-2794. 

Wawer, M. J., Li, K., Gustafsdottir, S. M., Ljosa, V., Bodycombe, N. E., Marton, M. A., Sokolnicki, K. 

L., Bray, M.-A., Kemp, M. M., and Winchester, E. 2014. "Toward Performance-Diverse Small-

Molecule Libraries for Cell-Based Phenotypic Screening Using Multiplexed High-Dimensional 

Profiling," Proceedings of the National Academy of Sciences (111:30), pp. 10911-10916. 

Webb, M. 2019. "The Impact of Artificial Intelligence on the Labor Market," Available at SSRN 

3482150). 

Weininger, D. 1988. "Smiles, a Chemical Language and Information System. 1. Introduction to 

Methodology and Encoding Rules," Journal of chemical information and computer sciences 

(28:1), pp. 31-36. 

WIPO. 2019. "Wipo Technology Trends 2019: Artificial Intelligence."    

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, 

C., and Sayeeda, Z. 2018. "Drugbank 5.0: A Major Update to the Drugbank Database for 2018," 

Nucleic acids research (46:D1), pp. D1074-D1082. 

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., and Hassanali, M. 

2008. "Drugbank: A Knowledgebase for Drugs, Drug Actions and Drug Targets," Nucleic acids 

research (36:suppl_1), pp. D901-D906. 

Wu, L., Hitt, L., and Lou, B. 2020. "Data Analytics, Innovation, and Firm Productivity," Management 

Science (66:5), pp. 2017-2039. 

Wu, L., Jin, F., and Hitt, L. M. 2017. "Are All Spillovers Created Equal? A Network Perspective on 

Information Technology Labor Movements," Management Science (64:7), pp. 3168-3186. 

Wu, L., Lou, B., and Hitt, L. M. 2019. "Data Analytics Supports Decentralized Innovation," Management 

Science (65:10). 

Zhang, H., Zhang, L., Li, Z., Liu, K., Liu, B., Mathews, D. H., and Huang, L. 2020. "Lineardesign: 

Efficient Algorithms for Optimized Mrna Sequence Design," arXiv preprint arXiv:2004.10177). 

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., 

Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., and Asadulaev, A. 2019. "Deep 

Learning Enables Rapid Identification of Potent Ddr1 Kinase Inhibitors," Nature biotechnology 

(37:9), pp. 1038-1040. 

 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 56 

Acknowledgments 

We would like to thank the senior editors, the associate editor, and three anonymous reviewers 

for constructive comments and suggestions. We also appreciate the generous financial support 

from Mack Institute for Innovation Management of The Wharton School, University of 

Pennsylvania. 

 

About the Authors 

 

Bowen Lou is an assistant professor of Operations and Information Management at the School of 

Business, University of Connecticut. He received his Ph.D. from The Wharton School, 

University of Pennsylvania. He conducts research on economics of artificial intelligence and 

innovation. His work has appeared in Management Science. 

 

Lynn Wu is an associate professor of operation, information and decisions at the Wharton School 

of Business, University of Pennsylvania. She researches and teaches how emerging information 

technologies, such as artificial intelligence and data analytics, affect innovation, business 

strategy, and productivity. She has won several best paper awards from top journals and flagship 

conferences in information systems and received two early career awards in information systems.  

 

 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3524985

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed


	Abstract
	AI and Discovering Drugs with Known Mechanisms of Impact
	Data and Measurement
	Empirical Strategy and Identification
	Findings and Discussion
	AI, Mechanisms of Impact, and Drug Discovery
	Lastly, our paper focuses on the effect of AIIC on drug innovation. Our findings may extend beyond drug discovery to have broader effects on general scientific discovery and R&D outcomes. Future work should consider the broader implications of AIIC on...
	Implications and Concluding Remarks
	In this study, we use a resource-based view of firms to develop a bio-pharma firm’s AIIC and examine its effect on the early stage of drug development. Our study makes two important contributions. First, we provide a theoretical extension on IT capab...
	Second, we create a multi-dimensional yardstick for measuring AIIC. While IT capability can be operationalized in many distinct ways depending on the context (Chan and Levallet 2013), we are the first to use patents and job postings on a large scale t...
	Note:
	(1). The summary statistics are reported based on the sample of firms with AIIC (the number of observations is 4,122).
	(2). We add one to actual values of the variables to avoid the possibilities of taking a natural logarithm of zero.
	(3). The stock-based measure of AI patents is referred to as AI stock (AI Stock).
	Table A2. AI on Drugs:
	AIIC, Number of Drugs with Known Mechanisms, and Novelty of Drugs
	Note:
	(1). Each drug used in the analysis has a known chemical structure.
	(2). Column 1 shows the results for the number of drugs discovered for preclinical studies in our fixed effect estimations. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.
	(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel drugs with novelty score ...
	(4). *** p<0.01, ** p<0.05, * p<0.1
	Note:
	(1). Each drug used in the analysis has a known chemical structure. Column 1-6 shows the results estimated by utilizing the propensity score matching approach on the sample that includes both firms with AIIC and firms without.
	(2). Column 1 shows the results for the number of drugs discovered for preclinical studies. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.
	(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel drugs with novelty score ...
	(4). *** p<0.01, ** p<0.05, * p<0.1
	Note:
	(1). Each drug used in the analysis has a known chemical structure. Column 1-6 shows the results from the coarsened exact matching method on the sample that includes both firms with AIIC and firms without.
	(2). Column 1 shows the results for the number of drugs discovered for preclinical studies. We examine the number of drugs with or without known mechanisms in Column 2 and Column 3.
	(3). Column 4-6 shows the fixed effect estimations for the number of drugs with their chemical novelty scores in a specific range. Three ranges are created: incremental drugs with novelty score between 0 and 0.3, medium-novel drugs with novelty score ...
	(4). *** p<0.01, ** p<0.05, * p<0.1

